
Introduction to Morden Application Development
Dr. Gaurav Raina

Prof. Tanmai Gopal
Department of Computer Science and Engineering

Indian Institute of Technology, Madras

Lecture - 26
Module P11

Practical: Introduction to authentication, hashing, curl & sessions

Hi all welcome to module P11. This will be perfect module that introduces us to the basic

concepts of authentication password hashing, a command length tool called curl which is

one of the most useful and work style tools for testing HTTP and API endpoints and the

concept of sessions, then how to implement them. We will be looking at implementing a

basic password hashing and storage mechanism.

(Refer Slide Time: 00:20)

We will also look at the concept of salting or password and why it is required, apart from

implanting a login endpoint we will also have a user creation endpoint we will then

implement cookie based session system, and then we will testing our APIS and endpoints

using curl.

(Refer Slide Time: 00:53)

Let us set to our coding console all right. So, in the last session we will left off at

creating a test d b endpoint and then articles end point which was talking to the data

base, we will first to start off will look at creating a password hashing endpoint. So, what

you would like to do is create an endpoint that takes and input from the user as a part of

the URL, and returns a hash string which is represents for the possibilities stored as. So,

just to sort of a at a pseudo code what you want to do is well. We extract the input value

and then we have a function called hash which we have not (Refer Time: 01:30) yet and

if you have this function called hash and then we will return this string back to the user.

So, this is kind of what you want to do of course, we need to have this function called

hash.

So, let us write the function hash here, which takes is an input the input and what it

should do here is it return the hash tag right. So, what we need to now figure out is, how

do we create the hash. So, we will be using the default library called crypto that is a part

of node you. So, if you had to the documentation for node j s you see library called

crypto and there if you go to.

(Refer Slide Time: 02:16)

And this function provide us a way to create a hash of a particular input. So, for example,

here a value for secret is taken and hash is returned. So, let us see what it looks like. So,

this is kind of what we need to do copy the function name here.

Now, of course, we need to have crypto here. So, let us include crypto. So, we include

crypto. So, now, we have the crypto library, now what we need to do when we hash this

is that we need to give the input we need to give it something called a salt we will

understand what is salt is in little bit, the next argument is a number of iterations. So, this

number of times the hash functionality of light and again we will understand why we are

doing a certain number of iterations. So, let us say we do 10,000 iterations up to which

we will use the standard default values that you want a key length of 512 and we will

you want to use the sho 512 digest.

Let us not worry about what these are just yet. So, this is what we will do and we will

return hashed of course, what we need here is the salt value. So, let us take the input

called salt from here and that means that we need to pass and input salt here. So, for now

let us say we create temporary salt value let us just create the value called this is some

random string. So, I just created a random string here, now when we hash this particular

value the output that we get will be sequence of bytes. So, to convert that into something

that we can read we are going to convert that to string and use the hexadecimal and

coding to convert them into something that is readable and printable on our screen.

Now, let us first quickly see if all of this works and then we will come back and try to

understand what this function is actually doing right. So, say this whole go to app and so

I typed hash password and this is the output that I got right so; that means, that our hash

is working let us try to hash this again. So, you can see there if called the endpoint here I

refreshed it called the endpoint again you can see that the value of the hash does not

change right, but if I change this.

(Refer Slide Time: 05:02)

And I make a small change in the input and I make it say password 2 and I refresh it you

can see that the entire value looks very different right so; that means, that what is

happening is that it is converting this string into a 512 byte string right which is a random

value right.

This is how we will store the users password right you want actually store users

password as password two row means store it has the hash. So, let us just try out for the

few more things let me example test right I refresh this it is the same grid. So, now, let us

take a step back and come back to understand what we are doing when we call this

function. So, what this function does is that, it converts it takes our input it appends the

value of the salt right and then it applies the hash function 10,000 times right why do we

do this why are we simply not just doing a hash of the input. For example, if you go to

the crypto library you will see there is the function called create hash and what create

hash is doing is that it is taking a particular input and it is converting that into hash value

right.

So, why are we just not using a hash right why are we using a special algorithm which is

called the password paste key derivation function at why are we using this. The reason is

that if we just save the hash without adding this random string the hash should always

evaluate to the same value for the same algorithm.

(Refer Slide Time: 06:47)

So, for example let us say that the algorithm is m d 5. So, m d 5 is a non hashing

algorithm. Now let us see we are using their non hashing algorithm for hashing a value

of password this algorithm will always hash the value of this string password into some

value let us say right. So, let us say converted this into this value.

Now, every single time the same algorithms applied to this the same string this is the

value of the hash that will be generated. This is good because given this value there is no

way I can figure out which thing it came from, but what is a common practice amongst

hackers is they maintain a set of tables which store the commonly hashed values right

which store the commonly hashed values of common strings. So, that way they do not

have to try to determine on reverse engineer where this hash came from, but instead what

they do is they just look a particular table up and they find out that for what string is a a q

2 r a s t f a hash. So, they are able to do that and in the s e that this belongs to the string

password. To protect a (Refer Time: 08:11) form that what we do is that we append a salt

value toward. So, now, the value that will be hashed is this, this value will of course,

have some completely different hash value right and there is no table in the world that

will have stored this particular hash value because if we choose our salt string randomly

enough.

Then there is no way there somebody would have pre created tables that contain the hash

values for all the commonly non strings and that way even if we users use strings that are

very common words for passwords for example, password or common names even then

by adding this random salt value, we can ensure that the values of the hash generated as

you need and cannot be reverse engineer. Further to protect ourselves even more p hash

the value 10,000 times which means that a particular value password is first taken this is

then converted to a value that contains the salt, this is then converted into a hash and this

is converted into another hash and so on 10,000 times right and. So, the final value that is

obtained that the hash is certainly not going to be present in any kind of a lookup table or

a hash table somewhere that will allow hackers to find out what the original string was

right.

So, now that we have done this let us make our hash function return; return a slightly

different string and we will understand why we will turning that string a little later. So,

let us create an array of strings where I first store the name of the algorithm that I am

using for doing the hashing, I then store the number for iterations.

(Refer Slide Time: 10:04)

So, that is 10,000 iterations, I will then store the salt value and after storing the salt value

I stored the hashed value right and then once I have these values, I will join them with

electro dollar right. So, let us say this to the string that we have turning contains the

name of the algorithm, the number of iterations the random salt value and in the fine

hashed value. What is important to know is that even if a hacker has access to this entire

string which is the hash value the salt and the number of iterations and the hacker also

knows that we are using the algorithm p b k d f 2; there is no way that the hacker will be

able to figure out that this hash actually comes from the string called test and that is why

this is the string that will actually store inside the database.

Let us go ahead now and create our database that we will store the username and

password fields up. So, let us head to our database console let us create a user table. So, I

will go to create table, I will create an id which should be my primary key create a

username which is a text column.

(Refer Slide Time: 11:21)

And then I will create password which is also text column and then I said id to be the

primary key and because we will be fetching data by the user name very often, I will

make this a unique index now so to ensure that duplicate usernames will never rise. Now

let us implement a function to create a new user. So, this function has an input we will

take the username and the password and it will create an entry in the user table.

So, let us assume that we somehow have the username and password that was sent to us

in the create user request and let us create the password.

(Refer Slide Time: 12:34)

So, there d b string is equal to hash password comma salt; obviously, we need to generate

a salt for this user. So, let us quickly generator a salt as well. So, you use the get random

by it is function to generate the salt, now once you have this database string we want to

save it in the database. So, we will do a pool dot query, you will make an insert query.

So, insert into the user table that is important to use his double quotes here because for

(Refer Time: 13:09) user is a bit for reserved keyword and we want to insert the columns

username and password, and the values that we are inserting into it are dollar one and

dollar two which represent two elements in an array, which are going to be username and

d b string. So, d b string is the hashed password once we have. So, I will write the call

back here and again we will handle the errors in the same way. So, for example, if you

are obtaining an error and I am going to copy paste, I am going to copy the code that we

have from earlier.

So, in case there is an error I will reply with error and otherwise we will send a response

saying user successfully created with the username right. So, the first problem that we

need to solve is where is username and password, where are these two values going to

come from. We can do we can use the same method of making it a part of URL where we

can have username and password right as a part of the URL, but that is not recommended

practice because ideally we should not be sending data in the get requests right especially

because the password is raw and in case for example, let us say the logs will be printed

and the logs will show and the logs will show what password is being printed and this is

very dangerous because anybody who has access to the logs will have access to the

password in which case it makes sense to make this a post request right and assume that

we will be able to extract the username and the password from the request body.

So, let us say that where user name is equal to req dot body dot username and let us say

where password is equal to req dot body dot password. So, now, we come to the next

question which is where is this data coming in the req dot body and what is the format of

the data that is coming in. So, we are going to assume that this is json request, and if this

is the json request we have to tell our express framework to look for these keys inside the

request body and this request body is going to be a json and the way if we do that is to

you something called the body parser which is an express library, and we need to tell our

express app that in case you see json content, load the json content in the req dot body

variable.

So, we will be doing and this is the way of telling our express framework that for every

incoming request in case it sees a content type json, it uses that and such req dot body we

need to figure out how we are going to test this right because this is not a URL that we

can for example, do this way. For example, if you make the request to create user such

cannot get such create user because this is not a get request, but a post request. So, the

question that we have to answer now is how do we make a post request and how do we

test out this API end point that we have made. In our application ultimately when we use

this create user API we will be writing code in main dot j s function right and side our

request here and instead of making a get request that you making here when we are

submitting to the name API we will actually changes to post request.

This is how we will do it in when we write the java script that will actually use this API,

but when we just want to test this out we will use the tool called curl. So, to use curl

because you might not have curl installed on your windows systems, let us go back to

our s h console I will take my (Refer Time: 17:17) here. So, I am logged into my (Refer

Time: 17:24) console I am going to zoom that up a little bit.

(Refer Slide Time: 17:31)

So, let us quickly check out what curled as. So, if I do curl this actually queries Google

dot com and whatever is h t m l response of Google dot com it shows that in the terminal.

This is exactly what the browser would have done, but the browser instead would have,

but the browser instead would have displayed the h t m l, now instead of displaying the h

t m l this is just going to display the h t m l string here.

So, what we are going to do is we are going to make a request to our app I made a

mistake here, I did not put I m a d. So, let me add I m a d right and you can see that the h

t m l has loaded right.

(Refer Slide Time: 18:09)

So, what we now going to do straight to make a post requests. So, let us see what the

post requests will look like I will have a username, and I will have a password, and let us

say that just password right. So, this is a json I am going to expect this json object

because this json objective will convert into the right username and password variables.

So, let us go here we are making a post request. So, we will use minus x post. So, this is

the way of making a post request I am going to send some data and my post request, and

I open a single code to specify what data I have the password is let us just say password

temporally right.

(Refer Slide Time: 18:56)

And now let us enter the u r l. So, it should be. So, that is the request that we are making

now if you see the error that I am getting it is saying that it sent me an error saying that

crypto dot get random bytes is not a function. So, we have made a mistake in the code

that I have wrote. So, let us go to the crypto documentation and save it. So, it is called

random bytes the word get is wrong. So, let us remove this and changes to random bytes

from it and restart this app and let us make the same request again. So, I press the (Refer

Time: 19:27). So, the error that will making is that if you should read the error carefully

and it says that the p b k d f two function is receiving a wrong value and it is saying that

it is not receiving a buffer by a buffer it means a string buffer.

So, it is not receiving the right type of value and what; that means, is that somehow it is

not able to access the username and password. Now why is it not able to access the

username and password because the username and password is probably not coming in

from this req dot body here right and why is this json object not being loaded? The

reason why this json object is not being loaded or we are not able to extract the username

and password from the update correctly is because express does not know that we sent it

json. So, how do we tell express that we are sending it the content type json in the data

that we are sending because only if we tell express that we are sending the json content

type it will use the body (Refer Time: 20:20) and extract the json value and put it into req

dot body. So, the way to do that is to add a http header right and called content type.

So, this is the content type header and we have submitting this content type header, I am

going to use the minus v flag on curl to see the request in more detail that curl is making,

let us you the request being made is. So, it is saying that it is making a post request to the

create user end point it is sending the content type as application json.

(Refer Slide Time: 21:05)

The response that was received is HTTP 200 which means there are response a

successful, and if you look at the response it says that the user has been successfully

created and the user is tanmai. So, let us go and look at our data and so we see that this

entry has been received. So, now, let us do the tricky bit of actually login this user in.

Login is also going to be a post request because it is going to accept the same arguments

username and password, but instead of inserting them into the database it is actually

going to fetch the value from the database to check if the value is matching.

So, let us copy paste this code here we do not need to create a salt. So, let us remove this

let us remove right; what we now want to do is actually select from the user table. So, let

us do select start from right and we have selected using the username value.

(Refer Slide Time: 21:58)

So, selected where the user name is equal to dollar 1, and dollar 1 is the username value.

So, what we are going to do is first search in our table to see this username exists. As this

username exists and if the SQL response is successful we need to quickly check if no

rows were received, which means that we will send the message saying we have send a

four naught three which means that it is a forbidden request and we will say that

username or password is invalid right. So, this is the responsible that we sent back and in

case we do have a certain number of rows then we know that the user name is that the

username exists.

Now, what we need to do is now we need to match the password. So, first let us extract

the password that is stored in the database. So, let us call it d b string which is result dot

rows the first element in the password field.

(Refer Slide Time: 23:10)

Now, if you look at the password field we have store the number of iterations here, this

value is the salt right and after that is the actual password data. So, we can use the split

function to split by dollar. So, this will now return an array right the value of this thing

we will be exactly go to use in the hash here. So, it will this array right and so what you

want to do is extract the salt value. So, the salt value is the third element in the array

right. So, we have the salt value now. So, now, let us create a hash using the salt value.

So, we will say that hash is equal to. So, here we are creating a hash based on the

password submitted and the original salt right and the test of testing whether this is a

valid user is to test if this hashed password is exactly equal to the value that was

originally stored in the database, and this is correct that makes the user is successfully

logged in.

So, we will return a message saying credentials to the correct and if this is wrong you

will return an error message thing that the username or password is invalid let us see this

in action . So, now, instead of making a request to the create user endpoint let us make a

request to the login endpoint right and we are going to use the same data username.

(Refer Slide Time: 25:05).

And password something of 500 internal error and it is saying this is syntax error that I

have made right which is an error that I have made in writing the code. So, so you are

returning an error here this is where we returning 500 error and so that means, says in

error in our s q l query. So, if you look at the s q l query I say let us start from user and if

forgot to put the where keyword. So, let us put the where keyword here let us make this

more readable it let us save this let us make a query again great so; that means, that a

credentials are matched.

Lets deliberately change our credentials here for example, let us send the wrong

password and I get a response saying for bidden right which is a 403 right that is the

response that I get; that means, that we have now implemented a login function which is

not actually doing anything, but it is just testing that the credentials are valid what we

ideally want to do here we want to set a session. So, that once the users logged in the

users stays logged in, but before we add session let us actually implement the login on

the u I so; that means, that what we will do is if I go to the home page then what I would

like to do is replace all of this and change it will login from here. So, let us quickly make

those changes let us go to index dot h t t m l let us remove all this right we do not want

anything here let us instead change this to log in to unlock cause and features ok

(Refer Slide Time: 26:27)

So, now what we are going to do is. So, what we are going to says you are going to click

here input type element called type text and make this is the username field, here which

is called password which is the input type password, we will give this element it h t m l

element in idea of password of it is we want have a place hold of this right and then we

will have a button and this is the submit button right. So, let us go to our min dot j s right

and let us remove all this counter code that we had right and now instead of having the

submit name we are going to this submit username password to login right.

So, now what we are going to do is we are going to be making a post request righ and in

the post request we will be sending some data. So, instead sending null we will be

actually sending data here, and the data that we want to send is json string.

(Refer Slide Time: 28:01)

And. So, let us convert an object into a json string and so, the object that we will have is

username let us assume we were able to extract the username value and password let us

use that variable to extract the password value right. So, where is this username and

password coming from as soon as the button is clicked we will extract it from the input

element. So, let us change this to user name. So, username will be this start value and

similarly password will be obtained from the password element right.

So, we will extract. So, every time the button is clicked we will figure this out part we

will figure this part later, but every time is the button is clicked we will extract the

username we will extract the password right. Just for debugging purposes let us print this

out right we will be making a request to the URL slash login right that is the post request

and once this request is sent right we will have to handle the end of the request. So, this

request is successful we have to save the user is logged in. So, we will remove this and

we will say right and what we can have in fact do to is we can print out in alert box

saying that logged in successfully right and in case there was an error. So, let us say have

the status was not 200, let us say if the status was 403 we will say that the password is

incorrect right.

And the other possibility is that the error status is 500, in which case we will say that

something went wrong on the server right we do not know what the error is some 100

error. So, let us make sure the these are else if conditions right and they should be string

if I the content type here. So, let us said the header here this is the same thing that we did

not curl. So, it can save this. So, reload this page. So, we have page load here let us load

upon stuck element, actually this is half the page that is the console here.

(Refer Slide Time: 31:19)

So, that we can see what is going on here the console let us make a request I click on

submit and I get it this alert box saying logged in successfully right is printing out the

debug things if you going to the network tab, you will see that the login request is made

it is a post request right and saying a response credentials correct.

It sending json object right it sending the right content type previous in json. Let us

change this (Refer Time: 31:38) something else and submit and you will see the

username password is incorrect if you look at this request that is being sent it is

responding to the 403 right exactly like how we were testing out to the curl. So, now, let

us get two adding sessions. So, when we add a session what we mean by that is that once

the users logged in, there is some way of telling the client that take this particular session

id and if you have the session id and you ever make a request again with the same

session id, then I will know that you were the same user who made the login request.

So; that means, we need to respond with a particular session id and the client needs to

remember that session id and send that back to us next time. Since this is a very common

functionality there is several libraries to this and we will be using the node session

library to this to make it easy to send the session id to the web client and for the web

client to repeatedly send as the same session id again and again we will use cookies let us

use the express session library it to this. Once again I have to tell express to use the

session library, I we are going to use the session library there are two configurations that

I need to give the session library one configuration is the secret which is the value that it

will used to encrypt the cookies with.

(Refer Slide Time: 32:57)

So, I will just set this to some random value if now right and we have to tell the session

library that when it creates cookies, the cookie should have a particular age.

So, we will say that the cookies and so, we will said the cookie can have a max age of.

So, this this is value specified in milliseconds. So, you will say 1060, which is one

minute and 260 which is one hour into 24 which is one day into 30. So, all are cookies

are long lasting cookies they will last for a month once a cookies said it will be set for a

month. So, now, we can come back and try to set the session value, we have to set the

session value before we actually send the response. So, let us move this up here.

(Refer Slide Time: 33:55)

So, let us set the session as req dot session dot of is equal to user id which will be result

dot rows of 0 dot id right. So, what we have done here is that we have assume that there

is a session object on the request right just like we assume that there was a body on the

request which was created by body parts or they are assuming a there is a session object

on request which is being created by the session library.

So, there is a req dot session, we have saying that there is going to be a key called auth

inside that object and that key will map to this particular object. And what is this subject

this subject says that there is a user id and the user id value is equal to the id of the user

that I have got in the database. So, what is actually happening in the background? So, in

the background what is happening is that the session library the session middleware to be

technically correct is setting a cookie with a session id right that it is randomly

generating by itself. Internally on the server side it maps the session id to an object what

is this object contained? This object contains a value called auth and what does auth

contain? Well auth intern contains another object which is our user id object right. So,

this information is maintained in the server side all that the cookie contains is a section id

right as soon as we do this here the express session library we will automatically make

sure that this object is saved internally as soon as the response is sent.

So, how do we test that this session object is actually being created? Let us create

another endpoint which we can use in the browser called check login and what this

endpoint we will do is that it will check that if there is a req session object, and if there is

a session object it will check if this and auth object inside it and if there is an auth object

it will check if there is a user id key inside their solve inside this auth object and if there

is then we will return a response saying that you are logged in and the user id that you

have is req dot session dot auth dot user id right and this is an integers let us convert that

to string. So, this is the value here, in case this none of these objects are found we know

that the user is not logged in. So, we will return as think you are not right. So, let us put

this in action to see if sessions are working for us.

So, let us enter the username and password. So, we saying that you logged in

successfully let us now go back to the check login and you can see that it is saying that I

am logged in is one right. So, now, let us try to implement a logout function. So, let us

say that there is a logout endpoint which is again a get request, because no data needs to

be sent and if this happens what we will do is that we will remove the auth object right

and so, this deletes the auth object from the session object right so that means, that we

are not storing the session anymore right. So, let us send respond in that your logged out

let us say this. So, I refresh check logged in and not logged in, every time I refresh the

browser because the internet session objects are reset then the sessions are lost. So, I do

not stay logged in because when I restart the server the session object that is maintained

internally is lost. Let us go back to our login page and enter a value here I am logged in

unsuccessfully.

So, now let us go to check login and I can say there I am logged in is one in keep

refreshing this, let us now call the logout endpoint logout end point says that I am logged

out now let us go back toward check log in and it is say that you are not logged in right

because this session object that we are maintaining has been deleted bias right. So, this is

how we implemented a very simple login and logout functionality and we also

maintained sessions.

(Refer Slide Time: 38:34)

So, now let us put together all the knowledge that we have gained so far, and create a

registration experience we should check is the user is logged in and we should use that

we will shows there is a registration form then to show logout button we can then add a

comment section to all the article pages and if the users logged in then we should a

logged the user to submit comments, but even if the users not logged in we should be

able to see all the comments. You should try to do this exercise by yourself to sort of

really see you will your knowledge about how API is work, how sessions work, how

login works, how the database works how frontend java script to works and how back

and java script works.

(Refer Slide Time: 39:14)

 I have created this application myself. So, let us have a look at what this application

looks like. So, I try to register the new users a user 5, users have been created

successfully. So, now, I am registered. So, now, I am going to try to login with the same

credentials. So, I will try to log in as soon as the login is done this area changes to a

logout section. So, I can go to any particular article let us say got to article one there are

no comments here. So, I can post a comment saying this is the comment by me user 5

and let us post this comment.Llet us comment is appeared let us go back to the home

page let us logout and I have to go back to article one we will see with the comment

remains there, but the box two insert the comment has disappeared right.

(Refer Slide Time: 40:07)

All the source code for this is available on this github repository. So, you can use that for

a reference the a new comment table was created to be able to stored comments and you

can check the SQL for that again inside the github repository you can or you can also use

the screenshots of adminer to see how this comment table was created.

(Refer Slide Time: 40:31)

So, the important thing to remember as we bring this module to close is that the entire

exercise is educational and you should try not to implement things like password hashing

completely manual like we have done ourselves, I delete for example, if you using node j

s you should use a library like passport or j s to make life easy and almost all other

languages and frameworks provide a kind of system to take care of authentication so that

we can ensure that the implementation is secure and easy to do.

