
Introduction to Morden Application Development
Dr. Gaurav Raina

Prof. Tanmai Gopal
Department of Computer Science and Engineering

Indian Institute of Technology, Madras

Module – 14
Lecture – 25

Understanding security, and some best practices

 (Refer Slide Time: 00:05)

Hi all, welcome to module 14. In this module we look at understanding the basic

concepts at effect a security for a web app and looking at some common best practices.

(Refer Slide Time: 00:15)

This model is unfortunately going to be listing down quite a few point after points. So, it

might get little boring, so bare with me. Let us look at the common loop holes that cause

security breaches. The first most common loophole is edge cases that are missed out by

the developer or in case the web app is being used by users on hackers in a way that

breaks the developer’s assumptions. The most common example of this is when the

developer forgets to add an authentication or an authorization check to an API endpoint.

So; that means, that let us say you taking any API endpoint that places an order and you

forget to check if the user id is locked in high profile example of this case was when Ola

app was hacked by developer and the developers able to place recharges of an arbitrary

amount of money. The second kind of example is when hackers are able to execute code

where developers do not expect code to be executed. A very common example of this

used to be when a amateur developers would setup a PHP service and would allow file

uploads to happen. So, users would upload a file, but instead of say uploading an image

which is for the developer who expecting user of the hacker upload in PHP file.

Now, if we visit this PHP file by trying to go to see the images folder and sets with file

dot PHP, if the web server or the directory is not configured correctly, the PHP file will

actually end up getting executed. So, this means that a random user who is not a

developer is able to execute code on our server machine. So, the user or the hacker can

potentially get access to all the different files that are there on the file system can even

start making request to the database can try to find out of the database username and

password is and such thing become possible.

So, another common loophole is when people who are not authorized enough are able to

access data. So, a common example of this is when we have an application and we have

a testing environment and a production environment. So, a testing environment is when

we have an application that is deployed and tests server, and production environment is

when its finally, a deployed on the actual server that is the app that are users use. So, the

domain points to the production server and when we test the application we test to the

test server. So, common every that happens in this case is that a developer or a tester who

is testing things is mistakenly given credentials to access the production database.

Now, the tester might not know this, now the tester himself or herself might only

malicious, but if the tester does not store credentials carefully then another user or hacker

can get access to these credentials and they will be able to access the production

database. The fourth kind of loophole which is often also at the control of developers or

the organization is a denial of service attack. So, denial of service attack is a kind of an

attack by hackers that aims to make either a part of a network or the server software on

available to users and the typical way of doing this is that hackers would make so many

requests to add site that normal users be not able to reach the side because the site is

overloaded.

The last kind of example which is getting increasingly popular today is social

engineering. So, the example we take all the best practices to secure our system, but we

not careful about where we stored our credentials or password or keys.

(Refer Slide Time: 03:37)

So, these kinds of things are not really technical problem, but a just a problem with the

way we manage or organized policies in our team. So, to understand what the sources of

these different security vulnerabilities are, let us look at the architecture of a webapp. We

will start from the right the browser is making a request to the network to the computer

which is the server host and then to the web server software.

So, the first place where things in go wrong is browser itself, the vulnerability might be

in the web app source code the code that we have written or might be in the browser

itself. On the network it could be because hackers have access to the data that is in transit

between a browser and a computer and their able to access that, it could be because there

is a denial of service attack on network components which is not allowing users to access

the server itself because also be because of man in the middle attacks where the network

is being completely compromise and there is a hacker another agent that is sitting in the

middle, that is pretending to be a web server and is not really a web server.

On the computer or on the server side of things they might be vulnerabilities in the web

app source code or they might be vulnerabilities in the operating system or the library

that is been used. These are three main touch points from where the main security

vulnerabilities can come from and our objective is to try to understand what are the

common things that go wrong and how we can prevent those common things from going

wrong when we think about security.

(Refer Slide Time: 04:51)

So, first let us talk about the front end code and let us make some fundamental concepts

clear, so that we understand where security vulnerabilities can come from. The first thing

to understand is that on the browser users and hence hackers have full access to your

front end code right the HTML the CSS and the javascript is completely accessible to

any user who comes to our site this means that we cannot store any secret data or

credentials or access token that a secret to our application in that source code. The

second thing to understand is that we are dependent on the browser to provide security to

our webapp.

So, our application or entire application is only as safe as the browser is from the front

end point of view. Just to give you an example of this when you use chrome browser

extensions some browser extensions can ask the user for permissions to read and modify

data on the webapp itself; that means, that if hypothetically there is a malicious extension

or a bad chrome extension on the chrome app store, then and be installed this chrome

extension then this chrome extension can extract a session id from a web apps cookies or

can send them to some agent, and that agent can start using a session ids for making

equation of a half.

Third thing that is important to remember is that if we include javascript libraries from

third party locations, than those pieces of javascript code have full access to do anything

on the webapp right because vs developer specified that those javascript file should be

used; that means, that those javascript files have full access to do anything that they want

on the web app. For example, if we are including say jquery javascript library and we

loaded the jquery javascript file from an untrusted source. So, the un trusted source have

might have modified the jquery library to have malicious species of code that are

extracting user data the forth and point to remember is that if an our HTML for any

reason our script tag is added either added by modifying HTML or added when the

HTML was first loaded that code excite the script tag will be executed.

So; that means, for example, let say we have a common space and users are log type

commons in each of the articles. So, let say I go to a comment box and I type javascript

piece of code which is script alert hello and close the script tag; that means, if there is

anybody else load this product page and the load the comment that I have tighten this

script tag will execute and a hello we will show up in the alert box. Now imagine if I am

a evil person and I do not write alert hello, but I right, but I write javascript that the user

cannot see right in the javascript just starts executing.

So, it is important to validate the user input while users are sending that data or while

displaying data that users have (Refer Time: 07:31) so; that means, the only way to sort

of prevent this error is to ensure that if your web page is displaying content that in other

user has written, it must be displayed in a way that the script tag is not included as if it

HTML into the HTML document. A very simple thing that a lot of developers forget to

do which become a source of common error and security risk is if we do not update

library is that we used frequently for example, of using jquery we should make sure that

we run the latest stable version of jquery and we should always also make sure that we

keep asking a users to upgrade and stay on the latest browsers that do not have security

vulnerabilities.

(Refer Slide Time: 08:10)

Let us come to network security; the first thing about network security is to understand

the network is not really owned by us. So, if where the developers we do not own

anything on the network. So, anything really can happen on the network and we must be

ready for that to happen the most common example of network security breaches are

called man in the middle attack click on that link and find out how many in the middle

attacks work in how man in the middle attack work and what kind of security breaches

they can cause. The only way to protect ourselves despite the fact the network is not on

bias is to ensure there is end to end encryption between the client and the server. HTTPS

is secured HTTP which means that HTTPS basically HTTP, but with end to end

encryption so that the network in the middle if compromise and or somebody is trying to

read a traffic in the middle they cannot read the data because the data is encrypted.

The browser creates and HTTPS connection and is able to encrypt data to send to the

server by using SSL certificate set have been installed in the server. However, the

interesting thing about end to end encryption is that while we can somehow ensure that

the data that send from a client to a server is encrypted, how can we ensure the service

actually the server. For example, when we connect to Google dot com, how do we even

know whether the server is actually Google dot com and this is where the second more

important property of SSL certificate come in where SSL certificate are actually used to

identify that a domain belongs to the server that is responding to our request and the way

this works is that whenever browser makes an HTTPS connection the browser cross

verifies the SSL certificate that is sent to it by the server with a certificate authority, and

the certificate authority is are inbuilt into the browser and we can actually update the

certificate authorities are add or one certificate authorities that we want, but the browser

uses these certificate authorities to check if the SSL certificate given by a server actually

belongs to the domain that we making a request to.

So, to summarize the easiest and in a sense the only way to (Refer Time: 10:16) against

man in the middle kind of breaches is to use HTTPS wherever possible and to ensure end

to end encrypted connection between our application on the client and our application on

the server.

(Refer Slide Time: 10:28)

So, this is why browsers have started displaying a little green icon next to the HTTPS

symbols. So, whenever you go to a site that has HTTPS in able to you see a little green

icon, and if you click on that green icon I drop down and it will tell you what the details

about this SSL certificate, and what the difference sub domains that are covered under

the SSL certificate.

On the other hand if you have any HTTPS connection to the website, but the SSL

certificate has not been verified or the verification has failed with the certificate

authority, then you will get an error like this. So, for example, in this case the server

might not actually be Gmail dot com and some other server in the middle on a network is

pretending to be Gmail dot com, and we have an HTTPS connection with that server

with that server is not Gmail dot com.

(Refer Slide Time: 11:12)

Now, let us move on to some best practices for API and web app development, whenever

we write an end point that is an API or a web page request then we must ensure that the

API has an authentication check and as an authorization check. So, we must check that if

a user is claiming to be a particular id then the user actually has that id and we must

check that whatever functionality is being requested for in the API or on the page is

something that that particular user id actually has the authorization to make a request to.

We should also always sanitize all the inputs that users send and we should never trust

the input that is sent by user the structured the format or the size of the data that is being

sent by the user.

We should also try to write as little code as possible to achieve the functionality that we

want, we should use as many mature library that have been written by pressure built the

open source community as possible. For example, we should never implement our own

hashing algorithm which might have bugs and which might not be as secure as existing

libraries. We should not store any credentials tokens or configuration data in a source

code for example, in a web app course code we should not write the database username

and password that a web app is using to connect to the database server. We should create

the files that contains this configuration data directly on the server, and not store them in

a git repository if you need to share this is credentials amongst other developers in an

organization, we should use a service like lastpass to share this credentials. Once again

just like with front end code we should regularly update server side software the

operating system and other libraries that are source code depends on.

(Refer Slide Time: 12:48)

When we are deploying our source code then there are few things that we need to make

sure that we take care of for example, our server might be outputting some logs we might

be printing out some logs as a program executes primarily for debugging purpose, we

should remember never to print out logs that contain sensitive information.

For example in a login end point we should not log the username and password that is

being sent by the user, because the whole point it defeats the whole point of hashing

which was to store the sensitive data in a secure way, but in this case logs will be stored

that contain the wrong username and password. So, if anybody ever get access these logs

then that entire data is compromised. We should also try to separate the staging and

production environment as much as possible so that we can test thoroughly and during

testing we can have a mode last attitude toward security, but during production we can

take greater care of security so that debugging is easier on the testing environment, but

the production environment is secure. When we are deploying source code or we are

deploying binary is that our server side code on our machines we should ensure that we

are not deploying or executing any files that are not guaranteed to be from our own

development team or a not guaranteed to be community libraries or operating system

dependencies.

We should use secure methods like SSH or to manage your servers for example, FTP is a

popular method to upload files to server this is not secure. SFTP is a more secure version

of FTP, even when we use SSH there is a method of setting up key based access and not

just using password to access because if use password to SSH remote servers then we

have to worry about sharing the password. When we need to access a database we should

ideally separate the administrative use of the database from users that have read write

permissions. So, for example, the webapp can use the read write username and password

for the database. If the webapp is just reading data from the database then we should

create a separate read user and give the webapp the read username and password to

access the database.

So, this way we can ensure that even if the webapp is compromise completely they

would not have more access that are strictly necessarily when they talk to the database.

We should also never execute raw SQL statements on the database if any part of that

SQL statement depends on user input, and this leads to kind of attacks called as SQL

injection attacks which are the most common way of attacking databases.

(Refer Slide Time: 15:17)

And obtaining access to the database that allows hackers to download or delete contact

from database. The key take away from this module are unfortunately each and every

point in this module, it would be include if you spent time understanding by each point is

a valid security point and you can get into more detail about how they actually work;

there are several useful resources on the internet that you should browse to understand

this topic in more detail.

