Introduction to Modern Application Development
Dr. Gaurav Raina
Prof. Tanmai Gopal
Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Module - 13
Lecture — 24
Authentication with HTTP

Hai all welcome to the first module in the performance in security unit. We are going to
talk about authentication with http and which will take us into interesting discussions

about how the http protocols works.
(Refer Slide Time: 00:14)

Objectives

- The need for state in HTTP requests & responses
- Authentication with username & passwords

- Introduction to tokens and cookies

- Hashing passwords in the database

Introduction to Modern Application Development Dr Gaurav Raina (II'T Madras), Tanmai Gopal (Hasura)

Talking about usernames passwords and the concept of session tokens and cookies will
also be looking at how usernames and passwords are stored in the database and why they

are stored in a particular way.

(Refer Slide Time: 00:23)

Recap

We've understood the basics of how a webapp works

We've understood the client-server architecture

We've build a basic webapp and know how frontend & backend code works
We've understood the need for a database to store state

Introduction to Modern Application Development Dr Gaurav Raina (IIT Madras), Tanmai Gopal (Hasura)

So, so far over the last few units we understood the basics of how webapp works we
understood what the clients server architecture looks like and what is the different
constraints are. We also build a basic webapp and we understand what the front end code

the back end code looks like and we also explore the database in a fair amount of depth.

(Refer Slide Time: 00:43)

HTTP is a stateless protocol

One HTTP request made by the browser actually has nothing to do with another HTTP request
From the server’s point of view, both are completely independent requests
To make each request

An HTTP connection is opened

A URL, headers, and request body (if required) is sent

The server responds with an HTTP response: status_code, headers and response body

The HTTP connection is closed

Introduction to Modern Application Development Dr Gaurav Raina (IIT Madras), Tanmai Gopal (Hasura)

HTTP is what is called a stateless protocol what this means is that one http request that is

made by the browser, actually has nothing to do with another http request. From the

servers point of view when the server gets an http request both of the request are

completely independent.

We have seen this even in the code that we wrote, in the (Refer Time: 00:59) code that
we were writing we where handling each request independently. Nowhere in the request
that we factoring in the fact that we knew that has somebody has made request one, we
also knows that person is making request two. Whenever the request is made the browser
opens up an http connection, which sense the URL, the headers and the request body, the
server than response with an http response; that means, we can contain status code or
contains some response headers and it or contains the response body and then the

browser closes the http connection.
(Refer Slide Time: 01:31)

Problem: How do | login to a site, and then stay
logged in?

- Ifevery HTTP request is independent, how does a user ‘stay logged in’.
- Foreg:
- Login into gmail
- Make API requests to fetch your email data, compose emails etc
- After logging in, how does the server know if subsequent API requests are made by the same user?

Introduction to Modern Application Development Dr Gaurav Raina (II'T Madras), Tanmai Gopal (Hasura)

So, this is one request is one cycle. If this is how http works, then how does login work?
For example, if I go to Gmail and I login and then I make an API request to fetch my
email data, how does that login process work what if I just directly make the API request
to fetch the emails or what if I directly go to my inbox page, how does Google know or
how does a Gmail server know that I am trying to make a request to the inbox page and I
am not logged in (Refer Time: 01:56) director to the login page and then once I am
logged in how does the Gmail server know that this is user tanmai gopal who is

requesting his email data, how is that link maintain.

(Refer Slide Time: 02:07)

Problem: How do | login to a site, and then stay
logged in?

Login as user9e:
username/password

Save username +
password to compare
Login successful
1 > Gmail
Gmail -

Browser database
server -

N Fetch emails

Whose emails?

Introduction to Modern Application Development Dr Gaurav Raina (IIT Madras), Tanmai Gopal (Hasura)

P siesr Wpemver F 3 O bt

So, just to explain this problem be more clearly on the left we have a browser, the
browser first goes to the login page and makes a login request. Laughter Let say he is
logging into the user name user 90 this is user 90 who is trying to login. So, the user 90
sends the username and the password in the Gmail server, the Gmail server checks with
the database to see is the username password or accurate and if the password matches to
the username, the Gmail server it turns a successful login response. Then it draws a sense
of fetch email request, but how does the Gmail know whose email to response with, how
does the Gmail server know whether this is the same person who made the request for

logging in successfully right how is that link maintained.

(Refer Slide Time: 02:46)
|

HTTP is a stateless protocol

Because HTTP is stateless (meaning no state is shared between 2 requests) how does the server
know the identity of the second request?
Answer:
Make the server send a secret, unguessable random string
Called a session token
Client side JS of the webapp should use this session token every time while making a request

Introduction to Modern Application Development Dr Gaurav Raina (IIT Madras), Tanmai Gopal (Hasura)

So, we only way to solve this problem is that the server should send a special string a
unguessable or a random string pressably, and we can called as a session token. So, the
server as to send a session token and for all subsequent request that the run accept should

use the session token.
(Refer Slide Time: 03:03)

Problem: How do | login to a site, and then stay

gg ' Login as user9®:
username/password
1
super-secret-token
Grail Nl Gmail
Browser 7 database
server e
Fetch emails + super-secret-token <==> user9@

super-sec ret-tofen

user9e’s emails

Introduction to Modern Application Development Dr Gaurav Raina (II'T Madras), Tanmai Gopal (Hasura)

So, let us try to see what this flow looks like; once the login is done and Gmail verifies
that the login financial are correct, Gmail does not replies in the login is successful the

Gmail also sends a secret token and this can be like 128 bit or a 256 bit string which is

sent back to the browser. The next request for example, the request that is made to fetch
the inbox (Refer Time: 03:26) fetch the emails and API, this request contains this token

and when this token is sent to Gmail, Gmail as stored this token already in his database.

So, Gmail says that the token as come and this token is belongs to user 90, and because
this token belongs to the user 90 Gmail server can now respond with user 90 emails
right. So, this solves the problem of carrying forward information from one request
response into another and it also solves the problem for authentication for Gmail to

understand who is making API request right.
(Refer Slide Time: 03:57)

]
Sessions

- Asession ID, or a session token is generated by the server and needs to be sent along with every

request
If any session ID is lost, then a hacker can make requests pretending to the server that the hacker is
userid90 with the right session ID

Make the server send a secret, unguessable random string

Called a session token
Client side JS of the webapp should use this session token every time while making a request
Whether API request or a request for a page

Introduction to Modern Application Development Dr Gaurav Raina (IIT Madras), Tanmai Gopal (Hasura)

So, session ID or a session token is generated by a server and it needs to be sent along
with every request by the client, which an (Refer Time: 04:03) for the browser. It is
important to understand that if the session ID is lost or compromised and a hacker gets
access to our session ID, then the hacker can make request using that session ID which

will allow the hacker to fetch the data that belongs to the user.

(Refer Slide Time: 04:36)

How do we send this secret token?

- However you want!
- Options:
- Asa GET parameter
- Asa part of the request body
- The standar way to do it:
- Header (Authorization, Authentication)

Introduction to Modern Application Development Dr Gaurav Raina (II'T Madras), Tanmai Gopal (Hasura)

Another important property of the session ID of the session token is that the client side
javascript, must use this session token every time at makes an a js or an API request and
also when the browser request access to privilege page for example, the slash email
pages of the slash inbox page, then the token it also be send along. So, those page
request. So, how do we send this secret token to the server for example, if we are the
developers who are writing the front end or the html and the javascript or a particular
application, how will be send this secret token to the server when we are making request.
Because many options and in fact, we can do whatever is convenient to us. So, the c r in
comes holes of both the front end code and the back end code meaning the client side
code, and the server side code then we can agree and any particular contract we send that
secret token. For example, we can send as a get parameter we can send it we can send the
token as the part of the request body, the standard way to do it is to send it as a http

header what is called a authorization header.

(Refer Slide Time: 05:11)

Sending the session token:

emails?token=¢>
s {“token”: <token>}
/emails [Authorization: Bearer <token>]

Any authorized request
+

0 e Gmail
Gmail -
Browser super-secret-token

database
server >

Response appropriate to
user

Introduction to Modern Application Development Dr Gaurav Raina (IIT Madras), Tanmai Gopal (Hasura)

So, let see what this looks like when the browser is now making a request to the Gmail
server it making a authorize request, it might be making an API request or it might be
making a request for page. So, a many different ways what the token can be send, for
example, in a get request you can say question mark token equal to so that means, the
this parameter is sent and what is the Gmail server be doing is it will extract the value of
this token, and check if you are access to this email page and other way to do it is to
make a get or post request, but sent what is called an http header, that contains

authorization and the token. So, this is called an authorization header.

In fact, even create your own http header, you can call it my secret token and that can be
the name of your http header and you can send the token as a value in that. You can also
make a post request on end point in this route typically be an API, in this case we can

send the token even as a request body.

(Refer Slide Time: 06:03)

But we need to send the token manually with every
single request!

- So the browser has something called cookies
- Cookies are special HTTP headers, that once set, the browser will keep sending along with every
request to that server *
- Cookies are tied to a specific domain
- Cookies have an expiry
- Aserver can request the client to set a cookie with a particular name and value
- The client may or may not decide to respect that
- Ifthe client does agree, then it sends a cookie header that contains the name and value

Introduction to Modern Application Development Dr Gaurav Raina (IIT Madras), Tanmai Gopal (Hasura)

However the standard way to do it is to use an http header. If you think about this is
actually little in convenient, every single API request that we make we would have to
remember to attacks the token when we make that request, and this entire system breaks

down if you want to have access to special pages.

For example suppose we have a page called server dot com slash emails and this is
actually a web page right. We want to have an end point that looks that looks nice for
example, we want to say server dot com slash emails I do not want my end point to see
to be server dot com slash emails question mark token equal to a real example for this is
a Facebook profile page, when you go to a Facebook profile page you got to Facebook
dot com slash username right. So, mightily should be say Facebook dot com slash (Refer

Time: 06:43).

So, if you try to go to this page how can we sent a longer token so that Facebook knows
that we actually have access to this page right because there is now way for us to send an
extra parameter as a part of the URL, because we want a URL as look good or we want
to be able to say this URLS. So, at solve this kind of a problem something called cookies
exist. Cookies are just like http header, but they special http headers; these http headers
are automatically managed by the browser, if a cookies has been set for a particular
domain the browser takes from the responsibility of making sure the that http header is

always sent to the server.

So, cookie is just another http header, but it is a special http header in the sense if the
browser always attaches the http header whenever it makes a request this request can be
a get request for example, it can be the link through get take or this request can be a post
request which is an API request, but the browser who will take the responsibility or
sending this http header. Cookies are tied to a specific domain so that means, that you
can send a cookie only to a specific domain; cookies that are created by the Gmail server

will not be attached by the browser for the Facebook server.

Cookies can have an expiry time. So, the browser will automatically take care of deleting
that cookie and not send that as an http header after the expiry time is cross, the server
can request the client to set a cookie. So, cookies can be set by the server of course, the
client may or may not decide to set the cookie for example, if I making a request from
the terminal where if I make the curl request or a user command by curl or a user
command called w get, to make the request then cookies are not managed by this
commands, but when the client is a browser, the browser understands a cookie header

and actually sets the cookie.
(Refer Slide Time: 08:27)

Examples:

Go to any site where you've logged in > Inspect Element > Network tab > Request > Cookies tab
[] L] Developer Tools - hitps://plus.google.com/serviceworker s

0 =

Introduction to Modern Application Development Dr Gaurav Raina (LT Madras), Tanmai Gopal (Hasura)

So, to see cookies that are been used on whatever sight that you are earn, go to a web
page right click open on inspect element at to the network tab, click on a particular
request and then click on the cookies tab that you will see. When you click on cookie tab

you will see all the different cookies that are being sent to the Gmail server whenever

request is being made. So, in Gmail case we are using all other different cookies (Refer
Time: 08:52) for different purposes, but the cookies that are of importance to a sub SID

and SSID cookie which contain our identity.
(Refer Slide Time: 08:59)

Examples:
eie Developer Tools - itps//coud igad hasuraiof
%] Eemes Consoe Souces Netwok Timelne Profles Applicaion Secuty Audis React
® O ™ ¥ vewiZ % peseveig | Dsatlecache [Offine Nothorting
Roges HdsamaURls () R U5 CSS Img Meda Fonl Ooc WS Manlest Other
¥m Wm m MOm B0m M0m MOm &Om @0m MOm Mm &Ors O0m TOm Tom O0m 0w W0m Hom 000m
Name Headers Preview Resporse Cockies Timing
o — S I
= N 4] vaks Doman [Pt borws/va. S WP [sem saesi
0 Liemd 7 Request Cookies
[e, _ctiua N NA N
e o e NA NA A
e i pad 7 NANA NA
o ool o NA WA NA
4 53034ebchazicclcboct bl _rap i 1908228378 NA NA A
tesocr BTN, | | —vsa i 170842225587 N NA A
. NANA A
rep 3 AT apphasra X2 N WA "
N NA N
B97790933 NA WA A
s N N
L "

etenBazsNszcx B

' E B .S EEN-

Introduction to Modern Application Development Dr Gaurav Raina (LT Madras), Tanmai Gopal (Hasura)

If you might to the inoide console you will see that a particular cookies being used to

identify who you are as user to actually handle the login.

So, for example, in this case you see this cookie and this cookie as a particular value. So,
using this value the server knows that when you go to cloud that imad dot server dot io, it
loads at the page that is relevant to you. This is how the inoide console works for
example, if I login I will see my homepage with my database credentials my (Refer
Time: 09:26) credentials and when (Refer Time: 09:27) code console it will load up my
database right. Similarly if you are login you go to cloud at I am at imad dot observe io it
will load your credentials right and the way this is done is because it has access to the

cookie and the server uses this cookie to figure out your identity.

(Refer Slide Time: 09:42)

Cookies

So cookies are pieces of data that are automatically attached to any request made to the same

domain

This makes them useful for all kinds of other things apart from just authentication tokens
Tracking
When you go to a webapp and it remembers what you did, even if you didn't login

Cookies can be set by the server

Cookies can be set by the client side javascript

Cookies are completely under the control of the client (the browser)

Introduction to Modern Application Development Dr Gaurav Raina (IIT Madras), Tanmai Gopal (Hasura)

So, cookies are basically pieces of data that are automatically attached to request made to
the same domain. This makes cookies useful for all kinds of different things not just
using them as mechanisms to exchange session information or exchange authentication
token. Cookies are used most commonly cookies are used for tracking this is why you
might have heard that cookies are dangerous or cookies are used for tracking and this is.
In fact, how Google analytics or how most tracking servers work they have a particular
cookie that they set and they whenever you visit a page the Google analytics script
makes a request to the Google analytics server using that cookie and that is how Google
analytics knows what are the different pages that are being visited by the same particular
user. As I mentioned earlier cookies can be set by the server, but the cookie can also be

set by the clients like javascript.

So, for example, we can use cookies for creating shopping cart experiences, let us say for
example, you are on ecommerce sight and many e commerce sights allow you to add
items to a cart without actually logging in. So, this means that whenever you add an item
to a cart, the entire cart data is actually stored on a cookie which means if you shut your
browser page and you e commerce sight again on the same browser, the browser will
show you your cart that contains of the old cart items because the cookie is still dead
right. So, we can use the cookie for storing clients side information as well very very

important to understand that cookies are completely under the control of a browser.

So, if the browser is a malicious browser or the browser has a bulk then the browser
might send incorrect cookies. So, the browser might not send cookies at all it is simply a
convention that the browser follows in which it decides to send cookies to the server

again.
(Refer Slide Time: 11:23)

Storing usernames/passwords

In our database, we need to store the username/password so that in a login request we can verify if
someone has entered the right username/password

username passwor‘d

But now anyone who can see this table’s data (say a
hacker gets access to some data from this table), then
the hacker can just use the password and pretend to be
userl!

userl myPas swerd —

user2 myN3wP4ss

Introduction to Modern Application Development Dr Gaurav Raina (IIT Madras), Tanmai Gopal (Hasura)

Now that we understood how session tokens work and how we can exchange session

tokens to the servers let us come back to the idea of a username and a password.

When we login we send the username and the password to a server a server compares the
username and password by value that it already has typically the value stored in a
database. So, for example, we might have a database tables that contains two columns
username and password, and let us say user one as a password called mypassword and
user two as a password called my new pass. When we try to login at the back you will set
the login credentials for the same username that is being given in the login and match the
password values if the password values of the same then the server will response the

successful login.

However this is actually a little dangerous and the reason why this is dangerous is
because anybody who can get access to this table data which is unfortunately a fairly
common attack then hackers that ables to get access to the database, in that case hackers
now have access to be raw password that is stored by every user. So that means, the

hacker can now login can pretend to be user one the hacker can also start doing actions

that are controlled by the password for example, changing your password or for example,
authorizing a transaction or many ecommerce sites or many banking sides you will be as

to enter your password or your pin number again.

So, not only does the hacker have access to your data, but the hacker can also start
making privilege transactions because the password is the value will be wrong. It might
seem like there is no alternative one this is the only way to solve the problem and the
only thing that we can do secure access to database, but there is actually very interesting

way to try to solve this problem.
(Refer Slide Time: 12:57)

Securely storing usernames/passwords

Passwords can be hashed

A Hash is a function that converts any string into an utterly random fixed length string
myPasswOrd & a3qadcasdfi231sdfzfnaskxjzzdf

Hashes are amazing mathematical functions because it is extremely hard to convert that random

string back into the original text. A one-way function.

Hashes are amazing because the probability of two pieces of text having the same hash value is

extremely low
username password-hash So now, instead of passwords store password hashes
When a login request is made, compare hashes not the raw
1 -— password
userl asasdf2je39... If a hacker gets access to the password hash, nothing to
be worried about.
user2 kjkuer923ca...

Introduction to Modern Application Development Dr Gaurav Raina (IIT Madras), Tanmai Gopal (Hasura)

We can store passwords and we can store password like objects right securely in a

database.

There is a function called a hash function and a hash function is a rather amazing
mathematical function that converts any string into a fixed length randomized string and
the amazing thing about the hash function is that you can go from one direction to the
others. So, you can has the value of my password and converts this into as random string,
but you cannot go back. That means, that if I that even if you know what the hash
function is and you know the algorithm of the function that is being used and you have
this random string it is almost impossible for you to recovery the original string that this
hash value comes from and this is one of the most amazing mathematical inventions that

has made model username password functionality possible.

So, now the way the server works is that whenever a login prediction comes with say
user one and my password, the web app fetches the data from the database it fetches the
data belonging to user one, it fetches this password hash the webapp takes the password
that is being given in login credentials which is mypassword applies the hash algorithm
on it and compares that to the password hash that it add in the database. If those two hash
in match then the password will be same and if the hash is do not match then the
password will not the same; this allows us to compare passwords without knowing what

the password really is.
(Refer Slide Time: 14:24)

Key takeaways

- HTTP s a stateless protocol

- Extra data needs to be sent that can help tie multiple HTTP requests to the same context

- Asession token is used for maintaining a login session

- Asession token can be sent in any manner as the developer chooses

- Best practice to send it as an Authorization header or as a cookie

- Cookies are pieces of data that are automatically attached to every HTTP request made to a server
- Passwords are hashed and stored in the database, otherwise extremely insecure!

Introduction to Modern Application Development Dr Gaurav Raina (II'T Madras), Tanmai Gopal (Hasura)

So, in this module we understood how http is a stateless protocol and how that means,
that as developers we have to sent extra data that can help as tie multiple http request to
the same context, we understood that we can use the concept of a session token to
maintain a login session, we also know that the session token can be exchanged with the
server in whatever format that we that we choose, we look at two popular conventions
for sending this session token a one is sending it as a http header as an authorization
header there is another popular convention of cookies which are used to extents of
machine, we also understood that cookies are actually more useful than just sending
session tokens and they can be used for doing several things like tracking or storing
clients and information we also looked at the concept of hashing and how password the

securely stored in a database.

