
Introduction to Morden Application Development
Dr. Gaurav Raina

Prof. Tanmai Gopal
Department of Computer Science and Engineering

Indian Institute of Technology, Madras

Module – 12
Lecture – 21

Scaling a database

(Refer Slide Time: 00:06)

Hi all; welcome to module 12, we are going to talk about scaling a database. So, we need

to scale a database when we need to increase the amount of load that a database can

handle. This usually happens when the amount of data that is being generated by the

activity on the web app starts growing rapidly or when the activity on the app requires

many more queries to be handled by the database. The typical signs of knowing when we

need to scale a database are when performance starts suddenly degrading rapidly. So,

whenever additional users come on the performance just suddenly drops we also know

that it is time to scale the database when resources are very frequently near maximum

use for example, the CPU, RAM or disk is maxing out. We can also predict that we need

to scale when the data is growing extremely rapidly and we can see that we would run

out of resource very soon.

(Refer Slide Time: 00:50)

So, the first thing to do when we presented with the scaling problem is to do research, we

should not make any assumptions about what is affecting our database performance and

what the right way to scale is we need to monitor key metrics study the database system

logs and do this whole process scientifically before we draw conclusion of which method

should be used. So, typically we should be analysing the queries and the query

performance and we should be looking at the CPU RAM and disk health of a database

server.

(Refer Slide Time: 01:13)

The first thing to do is to tune a database for increase performance we already discussed

this in one of the previous modules. The idea behind increasing the performance is that if

you are able to make each query on the database run faster then we can perform a greater

number of queries every second. The three main things that we have already discussed it

can be done is that number one queries can be improved and we can do this by studying

the query plans and the database logs. The second thing is to add indexes or remove

constraints or to alter some of the structures in the schema to increase read or write

performance of the database.

The third thing to do which is a little which is the hardest do in this list is to modify a

schema to better suit the common queries that are being made in the database.

(Refer Slide Time: 01:55)

Once we realised that it is becoming too hard for us to tune the database for greater

performance the next thing to typically do is to vertically scale the database server and

by database server here I mean the hardware is the database server setting on. So, the

three kinds of things that are done are improving the disk the RAM and the CPU

capacity of the particular machine that the database server is on and improving the disk

means either increasing storage capacity in case we are running out of disk space or to

increase the number of IO operations per second the database can do. For example, going

in for an SSD over a hard drive or going in for a better SSD.

The next thing to look at is typically the memory or the RAM DBMS use RAM very

effectively because they cache a lot of stuff for example, indexes are cached by the

DBMS. So, that the DBMS does not have to make a disk request to fetch the index and

then a disk request to fetch the data the index is already in ram. So, the database just has

to search through the index and then make a disk request to fetch the data.

Increasing the CPU could mean 2 things could mean making each core faster or good

also mean increasing the number of cores that we have both of these have a different

impact depending on the DBMS. Typically those from most database systems RAM and

disk provide the greatest amount of benefit and the impact of improving the CPU

configuration is heavily dependent on the DBMS.

(Refer Slide Time: 03:10)

The next step to scale the database is using master slave scaling can we talked about

master slave replication for backup, but more important than it is back up use case is it is

use in scaling also using a master slave for backup as the exclusive method for backup is

actually little dangerous because if human errors are made on the master then they will

also propagate to the slave. But coming back to scaling we typically look at master slave

scaling when the right traffic is getting a little heavy and the right traffic has started to

affect the read performance of a database. So, the ways typically setup is that we have a

master database and a slave database the slave is getting changes and staying up to date

with the master database. So, we write to the master database and then we make all the

read queries on the slave databases.

(Refer Slide Time: 03:54)

So, this is what the set up looks like we have a web app on the left and the web app is

making a write query to database instance which is a master. Changes from the master

are propagated to the slave databases automatically these are copies of the master

database and the web app does not need to read queries from the master database, but it

makes the read queries from any one of the slave databases. This actually provides us a

way to keep scaling the number of read queries that we need. So, if you want to increase

the number of queries that we can support for read we can just add more and more slave

databases.

(Refer Slide Time: 04:25)

The last broad methodology for scaling just called Sharding; Sharding is pretty much the

scariest way of scaling databases and it should only be attempted in the case of the

application really needs it. Sharding is a process of splitting a large data set on a single

database into smaller shards across several database instances and this is only done when

one particular database instance is not able to handle the entire right traffic.

Sharding or breaking up the data into various shards is a process that can be done

manually or automatically. So, we can split the data according to how the data is being

used across different instances, we can also use DBMS’s that support Sharding out of the

box examples of some database systems like this are mongo db. These database software

are fairly complicated and sophisticated pieces of core because they solve really hard

distributed systems problems, they typically end up sacrificing on some traditional

properties that we expect of a database to be able to achieve Sharding in a cluster. For

example, transactions may not work across the cluster or reads might not be immediately

available after its updates are made to the database. Sharding is hard because of 2

reasons the first reason which is fairly obvious is that applications need to change the

way they work for example, applications might have to make request for reading or

writing data to different shards or they might have to handle transactions in the

application logic because the database cluster cannot handle it anymore.

Sharding is also hard for a more subtle reason and that reason is that backup recovery

and migration also become very challenging because the data has not in one database

instance anymore, but it split across many shards.

(Refer Slide Time: 06:04)

So, the 2 broad ways of Sharding are Sharding data by usage. So, you can take tables that

are being used more frequently than other tables and take them out and put them into

separate database instances or we can shard by key in which case data inside a table is

split across various database instances. So, depending on the value of a key row is put in

one database instance or another for example, if you are looking at a user table then we

might decide that all the users from 1 to 1 million going to shard one from users 1

million to 2 million going to shard too and so on and so forth.

(Refer Slide Time: 06:40)

To quickly summarise the concepts that we learnt in this module we understood that

should approach database scaling very scientifically we should start with all the simple

stuff that we can do first master slave replication is a method for scaling and for splitting

read and write traffic it works very well when the right traffic is not extremely high and

the read traffic is increasing. Sharding is one of the final ways of scaling and handling

the largest amount of data. Sharding also solves the scaling problem to some extent is

one of the hardest things to implement.

