
Introduction to Morden Application Development
Dr. Gaurav Raina

Prof. Tanmai Gopal
Department of Computer Science and Engineering

Indian Institute of Technology, Madras

Module – 09
Lecture – 18

Transactions & ACID properties

(Refer Slide Time: 00:04)

Hi all, welcome to module 9. In this module we will be talking about transactions and

ACID properties. Our 2 objectives are to understand why transactions are needed and

what ACID properties mean.



(Refer Slide Time: 00:12)

So,  we are going to  look at  2  specific  use cases  to  understand why transactions  are

needed, we are going to look at failures and the system that can cause inconsistency in

our database and we are also going to look at concurrency and how concurrency can

cause  a  loss  of  isolation.  Do not  worry  about  what  these  mean  because  we will  be

understanding that VR examples over the course of this module.

(Refer Slide Time: 00:39)



So, first let us try to understand that how failures can cause invalid states to exist in our

database suppose we are reading data and writing data to a database and suddenly that is

the system failure which could be a power failure or a disc failure or a software failure

and this causes our database to an to be in an invalid state. So, just to take an example of

an E-commerce kind of modelling on the left we have a shopping cart and the shopping

cart contains three products and none of these and this entire shopping cart has not been

ordered. So, we see that is ordered flag is set to false. Once the entire order is placed and

the payment is done let us say we move to another state of a database where all the is

ordered flags are turned to true and in the ordered table three new rows will be created let

us say that the order is been placed for three of these orders.

Now, while both the state on the left and the state on the right are completely valid states

because of the system failure in the middle may be all of the items in the tables might not

get updated and we might end up with the state like this where not all the is ordered

values are updated and all the new rows have not been created. So, this is an invalid state

right. Ideally what we want is we want to be here or we want to be here we never want to

have a situation where we are in the middle and if by chance there is a failure then we

should be able to roll back to the previous state and then we should be able to restart the

entire order process again this process of undoing our operations is called rolling back.

So, this is one use case where we need some kind of. So, this is an example of where we

need  some  kind  of  atomicity  to  ensure  that  our  database  is  in  a  valid  state  and  by

atomicity we mean that we should have an all or none kind of situation where either the

entire set of operations happen or they do not happen at all.



(Refer Slide Time: 02:22)

Let us look at another example slightly more complex example let us say we have a

database which contains table which contains a value let us say which is a bank balance

right. So, we have a 1000 rupee back balance to start with. Now let us say somebody is

going to update this bank balance let us say somebody is adding a 1000 rupees to our

bank accounts. So, user 1 is reading the value 1000 is in adding the value plus 1000 to it

and is writing the new value. So, the new value 2000 gets written. But while user 1 is

reading and witting this new value user 2 is also trying to add a 1000 rupees to this bank

balance and let us say 1000 rupees is being read 1000 rupees was added and 2000 rupees

is 2 things that the new balance is 2000 rupees and tries to write this new balance of

2000 rupees.

So, what is happening is that before the first write came through the second user already

read and a value which was actually invalid right. So, we want to prevent this some

happening while this is going on and this business of desiring that user 1’s actions are

different from user 2’s action is called isolation. So, we want these operations to be in

isolation from these operations. So, this is another use case of why we need something

special in the database to be able to handle these use cases.



(Refer Slide Time: 03:40).

This is where database transactions come in. They provide in essence all are nothing kind

of future and they also provide this kind of an isolation that we need for example, instead

of issuing SQL statements one by one, we would issue an SQL statement called begin

tradition after which might be we will do a select operation and insert operation, update

operation, delete operation we do a bunch of other SQL operations and after finishing

our SQL operations we issue last statement called end transaction.

Now, this entire sequence of steps is called a transaction in case that is the system failure

or  something  goes  wrong  the  database  will  ensure  that  the  entire  that  all  of  these

operations are rolled back and we see the database as it was before this, begin transaction

happened.  So,  this  is  how  we  handle  failures  with  transactions.  Suppose  multiple

transactions that happening right like in this case where user 1 has a transaction and user

2 has a transaction if user 1’s transactions and user 2’s transactions cause a conflict by

updating or referring to the same value one of the transactions will be deliberately failed

and will be rolled back so that we have an isolation effect between these 2 transactions.

So, as you can imagine transactions are extremely valuable for financial or transactional

applications.



(Refer Slide Time: 04:50)

A lot of the times modelling a data well and specially normalising a data models it can

reduce the requirements for having transaction let us say for example, we have a simple

user and groups kind of modelling. So, we have a user table and a groups table inside the

user table we store the user id the user name and the group that the user belongs to right

and in the group table let us say that we store the group id the group name and then array

of users say as JSON column. So, in this situation if membership is updated let us say the

group of a particular user is changed not only do we have to obtain the user table and

change the group ID, but we also have to go to the group table and update the users array

we have to do both of these operations transactionally. If we do one operation and the

other operation does not go through we will have an inconsistent state and we will not

know where the truth is we will not know whether the group table has the true data or the

user table has the true data.

So, modelling a data well and ensuring that this user’s array is not used and we had only

having and we are only using a group id here which has a foreign key constraint to the

group table this will ensure that we do not actually need to use a transaction and we can

get away with this single SQL statement. These properties of transactions that we have

talked about are actually called ACID properties.



(Refer Slide Time: 05:54)

So, let us understand what ACID stands for. Atomicity which means that operations are

all or nothing consistency means that the entire database which means that if we have

foreign  key constraints  or  indexes  all  the  structures  in  the  database  move  from one

consistent state to an another consistent state. Isolation refers to the property that while

concurrent transactions that happening they are perfectly equivalent to those transactions

having executed in sequence one after another.

Durability refers to the fact that transaction should actually be committed to disk. So,

that  if  a  transaction  is  marked  as  completed  it  remains  safe  to  the  disk  even  if  the

database is restarted or if there is any kind of failure that causes the database to restart.

So, transactions that have ACID properties are very important to creating applications

that are stable and need a very high amount of data integrity.



(Refer Slide Time: 06:46)

The most important things you take away from this module are the transactions are very

valuable DBMS features especially for certain kinds of applications. It is important to

understand that transactions do not have to be provided by the database we can create

transactions  in  the  application  as  well,  but  we  would  have  to  write  much  more

complicated application logic to ensure that while a particular transaction is happening

no other transactions are allowed we would have to write application logic to ensure that

in case there is a failure variable to recover from those failures. So, that operations can

be rolled back and we would essentially have to do all of the work that DBMS is doing

for us in our application code.

The  price  that  we pay for  transactions  is  that  it  can  slow over  all  operations  down

because  the  database  cannot  do  multiple  operations  perfectly  concurrently  we  also

understood that doing good data modelling can prevent the excessive use of transactions

and we know that a transaction to have a high degree of data integrity must support all 4

ACID properties.


