
Mobile Computing

Professor Pushpedra Singh

Indraprasth Institute of Information Technology Delhi

Java Basics

Lecture 05

Hello, today we will see a program that will show you a concept of classes, abstract classes,

interfaces and inheritance.

(Refer Slide Time: 0:22)

Here as you can see I have created a project which has certain classes and interface. Let us go

to our first class the class name is geometry figure. You may be already familiar with the

geometry. So for example triangle, square, rectangle, circle.

Now let’s see so I have created an abstract class called geometry figure. In that abstract class

I have created a protected string called shape and I have initialized it as not define. Then I

have created a constructor for the geometry figure class which only prints out that it is the

default constructor. After that I have created another constructor for geometry figure which

takes a string and set the string variable of the geometry figure top the value given.

As you will see that I am using here the key word called this. In the previous lecture I have

told you that this is used to refer to the object that you are currently working with. So this dot

shape actually refers to the shape variable mentioned here. So when I set this dot shape equal

to shape value of this variable will be set equal to value given here. Then I describe an

abstract method called set size. And then I describe a public method called display shape. The

purpose of this program is to only show you the concept of an abstract class, interfaces,

modifier such as protected public and private and inheritance.

Now because I have defined an abstract class called geometry figure I will be inheriting this

class into sub classes. I have created two sub classes. My first sub class is equilateral triangle,

you may already know what an equilateral triangle is.

(Refer Slide Time: 2:33)

An equilateral triangle is the triangle which has all the side of same length. As you can see

that an equilateral triangle is a geometry figure so I can see that there is a very clear

inheritance relationship here. Similarly circle is a geometry figure that’s why the circle would

be the another sub class of the abstract class geometry figure.

Now lets first cover the equilateral triangle. Number one that equilateral triangle has a private

variable called side because the side is a property of the triangle only and that’s why I did not

declare the side variable in the super class which means the geometry figure class but I am

declaring it in the subclass. Equilateral triangle constructor calls the constructor of the super

class using the super key word.

And then it goes on to the right to over write the method called set size. You may also see

that equilateral triangle implementing area which is an interface. Lets first cover the

equilateral triangle then we will go to the area interface and then we will come back to the

equilateral triangle class to understand.

(Refer Slide Time: 3:56)

Then equilateral triangle is again over riding two other methods called get area and set area.

Set area actually does nothing. Let see where these methods are coming from.

(Refer Slide Time: 4:15)

Area, so I have defined an interface called area the centre face has two methods one is the get

area and one is a set area. I have not I have only declared these methods but have not given

any implementation. In interface we cannot give implementation of a method and we can

only declare that.

(Refer Slide Time: 4:46)

Similarly I have another interface here which is called size. This interface only one method

called get size.

(Refer Slide Time: 5:05)

Now every class which will implement these interface must over write these methods that’s

the reason why equilateral triangle was over riding methods called get area and set area

because equilateral triangle class is implementing the interface called area.

(Refer Slide Time: 5:25)

Equilateral triangle also is having axis to its parent class method called display shape without

having any need to over write or extends it. However the equilateral triangle class must

extend the method called set size.

(Refer Slide Time: 5:43)

Because set size is described as an abstract method in the class geometry figure. So

equilateral triangle is indeed extending the method set size and implementing it. Now let us

see what we have in another sub class called circle.

(Refer Slide Time: 5:56)

As you see a circle is also extending geometry figure and circle is implementing area as well

as size means circle is implementing both of the interfaces. Circle has a private variable

called radius. If you recall equilateral triangle had the private variable called side. This

private variable indicates that they are private to the sub class and this is a correct approach

because here I made a radius a variable in the super class and side also variable in the super

class. The side would not have been useful for the circle sub class. While radius would not

have been useful for equilateral sub class.

Now the circle has constructor which is doing nothing but calling (th) the constructor of the

super class. Then circle has another constructor which is calling the constructor of the super

class but is also setting the radius of the circle.

(Refer Slide Time: 6:59)

After that the circle also need to extend or implement the set size function or the set size

method which is described in the super class. For circle the implementation of set size is

different than the implementation of set size in equilateral triangle. As you can see that both

methods are implemented differently.

After that circle needs to implement all the methods of both of the interfaces that is area and

size. Which circle does? Now we have got our basic program ready. Which means that we

have two classes circle and equilateral triangle they are extending a super class called

geometry figure and one of them is implementing one interface and the another of them is

implementing both of the interfaces. Now let us see polymorphism in action.

(Refer Slide Time: 7:56)

I have created a separate class called as test for testing the functionality of the classes that we

have previously created. Because we want the test class to run that’s why we need to have a

main method in the test class as discussed in the previous lecture the main method should be

declare static and public. Which means that in order to use the main method I need not to

create a object of the test class.

Static ensures that I can run main method without creating an object. Public ensures that I can

run main e method without being a part of the test class. Now let us see what we have we

declare (())(8:40) object of (())(8:42) equilateral triangle E. E is the variable that refers to the

object similarly we do for the circle where C is the variable that refers to the circle as you see

that we are calling the constructor which takes the string as an input and we also declare a

variable of abstract class called geometry figure. As we saw earlier we cannot create object of

an abstract class. But we can create variable of an abstract class.

Now I am calling the method E dot set size and C dot set size. Which essentially means that I

am calling the same method for the variable of equilateral triangle class and the variable of

the circle class. Okay. This is what we refer to when we mention method over writing the set

size is the same name. Method over writing allows your program to be more readable and

understandable. Now I only need to remember the method called set size. And whatever

variable I will use java dynamic binding will make sure that the method from that class as

well.

(Refer Slide Time: 9:56)

In order to show polymorphism I assign F to E and then I run the method called display

shape. I also print out the area using the get area. After that I assign F to C and I run display

shape and I print out the size of C by using the method called get size. Lets run this program

and see what kind of output we get and then we should come back to the program to

understand how that the output is obtained.

(Refer Slide Time: 10:37)

Our program is prompting us for an input because the set size method requires an integer

input. I will give it an input let’s say five. Then the set size method for the circle also requires

an input. I will again enter five. Now let’s see what happened.

(Refer Slide Time: 11:01)

First you saw that the correct set size methods were called for the variable of equilateral

triangle and of the circle. And then F dot display shape was called F was a variable of the F

set class geometry figure but at the time of this method called F was referring to E which

means that the display shape of equilateral triangle should be called.

(Refer Slide Time: 11:38)

Let’s see what does the display shape method is we have defined the display shape method in

the geometry figure and all display shape method does is print out the value of the shape

variable.

Now the shape variable in the abstract geometry figure is defined as not defined. However

when we create an object of an equilateral triangle class we use the constructor which was

taking the value of shape ad in our program. We gave the value of shape to the triangle. Now

when the display shape method is called it prints I am and the value of the shape variable

because it was referring to the equilateral triangle and where the value of the shape variable

was triangle it printed I am a triangle.

Then we ran the method called the get area which was a method of the interface implemented

by equilateral triangle class. It calculated the area of the triangle given the length of the side

and printed it. Similarly we did the same thing for the circle we first assign the variable of

geometry figure to the object of the circle after that we printed display shape and correctly.

Now the print out says I am a circle. After that we print out the value of the get size which

prints nothing but the radius that was given.

As you will see that for the get area size we need separate implementation because there are

different methods to calculate area of a triangle and area of a circle or if declare other sub

classes such as rectangle or a square or a polygon the method get area will be different from

each one of them. That’s the advantages of using interference or abstract classes. We only

need to remember the method name called get area which (they) which we can then called for

different object and get the correct output.

So in this program we have seen concepts of abstract classes sub classes, interfaces,

polymorphism and inheritance. I advised you to write a similar program may be using your

college as an example or you may use any (())(14:16) example. For example you may define

an abstract class called animal. You can then extend it to let us say dog and cat then you can

say you can implement different methods (wir) which are specific to different animal

category.

Try to use all the concepts of inheritance and polymorphism in your program that you are

clear that when you are using polymorphism or inheritance what would be the expected

program output look like. We have already covered basic concepts about java classes, object

abstract classes and interfaces. Today we will look at some other concepts called inner

classes and anonymous inner classes.

(Refer Slide Time: 14:59)

The best way to learn this concept is to write the program that displays these concepts in

action. Let’s see what an inner class is. In java an inner class is a class defined inside another

class.

(Refer Slide Time: 15:13)

An inner class can access private variable of the outer class. And it can be hidden from any

other class of the package. An inner class is usually used to save the amount of code that you

need to write while you are defining call back methods.

(Refer Slide Time: 15:33)

A local inner class can be declared inside methods and the scope of that inner class remains

limited to that block of code which is completely hidden from outside the block of code.

Inner class can be specified without an access specifier and it can also access local variables.

(Refer Slide Time: 15:58)

An anonymous inner class similar to inner class except that it does not even have a name or

constructor for that reason it should only be used when the code is very short in size. In

android programming we will be extensively be using anonymous inner classes.

(Refer Slide Time: 16:21)

Static inner class is used when you want to have an inner class which does not require a

reference of the outer class that is there is no need to use an object of the outer class. For

example you may want to compute minimum and maximum number in an array.

(Refer Slide Time: 16:40)

Another concept in java is of object cloning. Because you create object of a class sometimes

you may want to copy that object information. However you may use the single equal to sign

only reference is copied. Which means that now the two variables referred to the same object

and any change in the object will be reflected in the two variables. If you really want to make

a copy then you should use the method called clone

(Refer Slide Time: 17:15)

The public clone method that is available only copies the immutable data types. If you want

the real copy of an object you must implement the clone able interface as provided by the

java and then you should define the clone method yourself. This is the way to clone all the

mutable objects.

(Refer Slide Time: 17:42)

Another important concept in java is of exceptions. An exception is a way to handle the

errors in java program and to define behaviour of a java program when errors do occurs in

your program. For example in C plus plus or in C if you access an element outside the

boundary of an array you receive an unexpected behaviour.

For example you may have a segmentation fault which will clear your program or you may

receive a random garbage value. You never know what kind of behaviour you will get. In

java you may thorough an exception whenever the program attempts to access any value

which is outside the boundary of a given class.

(Refer Slide Time: 18:34)

By defining expectation you can limit the behaviour of the java program. Exceptions are very

useful for run time errors. In order to use exception you throw an exception which is then

caught by handler. Exceptions provide you more flexibility than terminating a program.

Using an exception you can keep your program running while handling an error. However if

you do not catch a exception then your program may terminate. Such as for the example

given of overstepping the boundary of an array.

(Refer Slide Time: 19:11)

Java does provide you exceptions which are checked and unchecked for unchecked exception

the compiler will not check if you have provided a handler or not. And it is responsibility of

you as a programmer. For checked exception the compiler will check for a handler and if you

have not providing that handler the compiler will give a warning and an error where you try

to compile the program.

(Refer Slide Time: 19:42)

A simple way of declaring exception is using a try and catch block. You start a try block with

a curly bracket then you continue all the statement that may throw an exception after that you

try to catch those exception in catch block. The catch block defines the action that you will

take if such an exception is worth thrown by your program. So far we saw the exception and

the classes now we will look at threads in java.

(Refer Slide Time: 20:13)

As you see that today’s computer are very powerful which means they can do multiple task at

the same time. The technology that enables is called multitasking or multithreading.

Multithreading allows you to run parallel lines of execution in your program as you may have

studied in your operating system codes that are thread is line of execution and a program may

have multiple threads which signifies multiple parallel lines of execution. So why do we use

threads?

(Refer Slide Time: 20:52)

Well we use threads to support concurrent execution paths in our program. For example if

you are running a network program. You may assign a thread to receive the data while

another thread is displaying some information on the display. Similarly for GUI applications

you may assign different threads to different GUI components.

(Refer Slide Time: 21:15)

In java you can extend an interface called runnable to implement the thread functionality in

your program. The interface runnable has a method called run which you need to implement

for your class. A class that implements runnable can support multiple threads.

(Refer Slide Time: 21:36)

Here is a simple example. Suppose I have a class called my runnable in that I will have to

then define a public word run method and that’s it. Now my program can support multiple

threads.

(Refer Slide Time: 21:53)

So first I can create an object of a runnable type then I create a thread object and then I can

start the thread please note that when you use the command thread dot start or t dot start your

control will pass to the method called run.

(Refer Slide Time: 22:14)

That you have already defined.

(Refer Slide Time: 22:17)

From your operating system class you may already know that thread may live in different

states. A thread may be created (a) after that it becomes runnable. From runnable it may be

blocked, it may be waiting or it may be timed waiting and once the work of the thread is

completed it may be terminated.

(Refer Slide Time: 22:47)

Synchronization, it s very important to manage a controlled access to the same data in your

program when there are more than one thread is active. You may have studied about race

condition in your operating system codes. A race condition occurs when more than one

thread try to access the same data and tried to modify it.

(Refer Slide Time: 23:09)

Here is the simple example showing race condition. Suppose there are 2 threads, thread 1 and

thread 2 so this is the thread 1 and the thread 2. They copy the same variable which has a

value of a 5000 into the register of thread 1 and thread 2 also copies the same values because

the thread may have been switched by the operating system scheduler at that point of time.

Now as you see that the variable is copied into the internal register for the threads so when

the control comes back to the threads it works on that value. Suppose the first thread add 500

to it. However before it could store the value it is again switched. Similarly for another thread

which is copied the value of 5000 it also adds 900 to it.

It is able to store this value again but then the control is switched by the scheduler and then

the thread one which had the value 5500 stores the new value. This means that the value

modified by thread two is over written by the thread one. This is simple example of race

conditions. Race condition may occur in many other program and they may be very complex

to detect.

(Refer Slide Time: 24:38)

In order to handle race conditions java provides you locks. From java five point zero there are

multiple types of locks are available in java. You may have studied about logs, condition,

semaphores, view tax and monitors in your operating system codes. So we will not repeat it

here. However you are not sure you should try to make a java program that uses these logs,

semaphores and monitors to see the fact of each one of them.

(Refer Slide Time: 25:12)

Java also provides a very simple method to make sure that you are access is synchronized.

Just by using a synchronized keyword you can ensure that all the access to M to a data

objects inside a methods are synchronized across the multiple threads that are trying to

access. Synchronized is like a monitor.

(Refer Slide Time: 25:36)

Here is a simple code example using synchronize. Suppose I want to make sure that in my

method called method name all the data accesses are synchronized. Only thing that I need to

do is put a synchronized keyword in front of it.

(Refer Slide Time: 25:51)

However there are several limitations with synchronize as you may have already known from

your operating system codes. Synchronize act as a monitor which means that it has inherently

inefficient compare to a lock. Thank you! This completes our discussion on threads and now

we also complete our required background in java for taking the course on the android.

There are many more features of java which are used in android programming however after

the series of lectures I expect you to complete that on your own. For these series of lectures I

have used the book Core java by Horstmann and Cornell. This is an excellent book which is

available at multiple book stores. You may also use any other java book that you may be

familiar with. Thank you!

