
Mobile Computing

Professor Pushpendra Singh

Indraprastha Institute of Information Technology Delhi

Lecture 37

Hello, so we will continue with our program and in this series of lecture we will try to come

to our original goal of getting a multiple user interface. That is when we click on one item in

the list another fragment will start and shows us the detail. So, in this lecture you will learn

about how to start an activity from fragment and how to actually implement the multi time

display.

(Refer Slide Time: 1:01)

So, let us start programming, I will just do a quick revision we now have following files in

our program Report, ReportActivity, ReportFragment, ReportListActivity,

ReportListFragment, ReportStore and SingleFragmentActivity. So, these are the files that we

currently have and we are now going to start working. So fine so the first thing that we will

be doing is that when I user presses an item on the list of reports a new ReportActivity which

will host a new fragment will appear and display the details for a particular reference of the

report.

So, let us see that how do we start an activity from a fragment. So, starting an activity from a

fragment is not very different that we did earlier in the very beginning in the math quiz app,

where we started an activity from another activity. Similarly, we can start an activity from a

fragment only thing you have to do is that you have to call Fragment.startActivity which

takes intent as a parameter and then this will start the corresponding activity. So let us start

coding, so we will go to report list fragment class, this is our report list fragment class and in

this we will let say update that was earlier doing nothing but just showing a toast the onClick

method, but this time now it will send an intent to start an activity.

(Refer Slide Time: 2:15)

So, I will remove this code and I will write intent, because I am going to start an intent = new

intent the context and the actual class, so this is an example of explicit intent as you may have

guessed. So, I do this then I do start activity intent that is it I do a I do an all int so my error

will (()) (03:03). So, now I have started an activity from my own click, so when I do the

onClick I take an intent which is nothing but a message object. I give it the actual path, so

this is an explicit intent and then I can start that activity, ok. Now, let us try to run our

program and to see that what is the impact of these two lines here. So, we start our program,

we look at it so the build is still running, yes.

(Refer Slide Time: 3:56)

Now, let me click and as you see that I can see the detail then go back click, I can see the

detail. Currently we do not have any detail in the report, but now we are starting another

activity by clicking while earlier it was just showing the toast, so let us move on and do some

more coding. So, number one thing is that we can tell our ReportFragment that which report

to display by passing the report id as an intent extra when the ReportActivity is started. So,

that is one thing that we can do, so let us start putting some extra into it and see that how do

we enable that much clarity.

(Refer Slide Time: 5:11)

So, let us go to the ReportActvity class, this was our ReportActivity class and in this class

apart from rest of the code which is very simple here let me take it closer. Let us write some

more code so public static final String and (())(05:30) final and string it will be capital

EXTRA REPORT id = now you would like to give a unique name, so one we have deciding

this name is to decide it to just like the way have decided your package name so for example,

in my case I will just call it in.ac.in.ac.psing something which just makes it unique for me

in.psing.mc16. and then I can just give it the my name of my program.report_id.

And then I create a new intent where I will use extra to pass the extra information. So, I

create, so we have done that earlier in the math quiz application as well. So I think you can

relate it to that, that whenever we have to do something that is pass an extra we write the code

like this V reportId. So here we do nothing but Intent = new Intent context comma

ReportActivity.class and then intent.putExtra EXTRA_REPORT_id reported, then I will

return this intent, so yes. So, now I am using an extra method is same as we did in themath

quiz that we created the new intent method and report an extra and this time we are passing

the reportId. So, after creating this explicit intent and calling put extra to pass we can now

update our ReportHolder class to use this new intent method.

(Refer Slide Time: 8:41)

So, let us go back to our previous class that we will change it the ReportHolder class. And we

should just remove this line and change it with Intent intent = ReportActivity.newIntent

method and pass it the activity and getId so that is fine. So, now we are passing the id when

we are sending the intent. Now, let us because we are passing an extra we will have to

retrieve an extra that is the second part of the work. So, now let us write some code to

retrieve the extra. So, now our reportId is within Intent and there are two ways in which a

fragment can access data and its activity is Intent because this is passing through the activity

and we need to get the date and the fragment. So, one way is an easy and direct short cut way

which we will be using here. And then there is another way which is kind a little bit more

complex and use this FragmentArguments which we will learn today in this lecture.

(Refer Slide Time: 10:41)

However, first let us start with the easier method and in the easier method we simply use the

getActivity method of the fragment and we access the Intent direct and later on we will use

the more complex method. So, let us use it in the first, so we will go to our ReportFragment

class and we will go to the onCreate method of it where we are passing the bundle. And this

is fine and the onCreate and now instead of this we will be adding some more code which is

that VUIDreportId = VUIDgetActivity so the fragment is just calling the getActivity method

and getting the Intent of the activity that it wants. And, then it is going to get the data so

ReportActivity.EXTRAREPORTid, then we the line which we just deleted we add it but in a

different way.getgetActivity.getReport and our reportId.

(Refer Slide Time: 12:54)

So, Alt Enter, so yeah so now this part is done. So, now we have to also do some update into

the way we had written the ReportFragments view. So, let us add some more code but this

time in the onCreate View. So, essentially first step is that apart from the TitleField we would

I we would also be adding few more details here. So, let us come here and say

mTitleField.setTextmReport.getTitle and then we can also do in the ResolvedCheckBox that

mResolvedCheckBox.setCheckedmReport.isResolved. So, here I did some code to update the

view and now let us watch what difference it has got in. So, earlier if you remember it was

only showing an empty detail. Now, you will see what difference it has made, so earlier it

was empty detail.

(Refer Slide Time: 13:36)

Now, let us see we are clicking on report number 3, now you see that the title is filled in. Let

me go back so and this time I will click on report number 4 where we have already put the

put the ResolvedCheckBox.

(Refer Slide Time: 13:49)

So, now you see it comes as resolved while by press on report number three it is not. So,

essentially using the Intent and the extra we are passing 2 values one is the Title and one the

status of this CheckBox. So, and then we are able to successfully pass it and the fragment

would call the getActivity method and could get access to the Intent data and close it. So, this

was fairly easy, now this was fairly easy as did fast but there is a down side to it. Number

one, that we always insisted the fragment should be dependent of the activity which are

hosting in so that they can be used across different activities.

(Refer Slide Time: 14:39)

However, in this case if you see the way we have written the code our fragment is dependent

on an activity which is having this variable called EXTRAREPORTId. So, this actually limits

the use of our fragments, reuse of our fragments which may be ok in our particular case but is

not a good approach. A good approach or a better solution would be that we that we keep this

id somewhere else in a space which belongs to the ReportFragment but then rather than

keeping it in the reportActivities for small space. And then report fragment can access this

data whenever it wants without line on the reportActivities so currently it is relying on the

reportActivity which is not good.

We want to separate the both process out and this functionality is achieve what we call the

fragment arguments. So, let us see that how to use fragment arguments in our program. So,

each fragment instance can have a bundle as you can see can have a bundle object associated

with it. And this bundle can have value key value pairs of the data just like we saw earlier in

case of activities. And we can use some of these to store the information that we want.

So, this key value pair inside the bundle is known as argument and that is what we are going

to use it. So, in order to create a fragment argument to that to use the bundle object than do it.

So, let us get started by first creating the bundle objects and then attaching the arguments to it

which the fragment can use later on. So, in order to use these arguments we will have to first

create a bundle and then attach the arguments bundle to the fragment by calling a method

called set arguments fragment.setarguments bundle uhh.

And this attachment must be done before the fragment is associated with an activity. ok, so

usual method in android programming is to add a static method name new instance the static

method is name new instance to the fragment class. So, that this method can create the

fragment instance and bundles up and sets this update. So, when the hosting activity needs an

instance of a fragment, we will have to call the new instance method rather than calling the

constructive directory. So, essentially what we are saying is that instead of a constructor of a

report fragment, we will be creating a new instance method of the ReportFragment. And,

when the activity needs to use ReportFragment it will have to call that (()) (17:20). So, let us

get started with programming.

(Refer Slide Time: 17:33)

Private static final String ARGREPORTID = report_id and now, let us go and put some

public static report ReportFragmentnewInstance that is the method we want to create

VUIDreportId. And inside this static method we will create our bundle bundle and then we

will put few things into it rId.reportId and then we will return the fragment returnfragment so

yes. This is now this is the method that we will now be using instead of the constructor of the

ReportFragment directory. So, now my reportActivity class should call this method when it

needs to create the ReportFragment and not the not the constructor. And when it calls it will

pass in the VUID it receives from its extra. And then return to the reportActivity and then

create fragment retrieve the extra from the reportActivities Intent and pass it in the

ReportFragment new instance method.

So, that is how we will, so this is a slightly complicated loop that first we create an instance

and the reportActivity passes it and then it retrieves, then the earlier method where we will be

just calling that activity. But in this method our fragment will be independent of the report

activity, so that is the best.

(Refer Slide Time: 21:22)

So, let us see how do we achieve it. Let us go to the reportActivity now first and instead of

instead of this line let us use something else here, which is to change the create fragment with

not just this VUID reportId = VUID getIntent.getSerializableExtra EXTRAREPORTid and

then return ReportFragment.newInstance.reportId. So, yes so now we have added good

amount of code here which can help help our reportActivity to call the fragment using the

new method. Now, here you will notice that the activity has to still depend on the fragment,

because that is what the need of that application usually asked. The activities have to know

about the fragments that they are using but there is no need for the fragments to know which

activity is going to use in that.

(Refer Slide Time: 23:59)

So, the independence is not your (()) (22:27). Now, let us focus on the next step which is to

retrieve the arguments, so when a fragment needs to access its argument, it needs to call a

method call getarguments then one of the type specific get method of bundle to get the

specific value. So, let us write some code and try to see that how it is done, we will go back

to the ReportFragment class and in that we will go back to the onCreate method and we will

try to see what we can do here. So, ok so one more thing we now can make it a private and it

will be fine. So, it will be fine it will not affect it program uhh. So we can make it as private

and now let us go back and as you see that this is the older method. So, we will now remove

it and we will change it to the new method VUIDgetArguments.getserialgetserialzable then

the REPORTID.

(Refer Slide Time: 24:10)

So, that is it now let us try to run our program and see if it is still working and doing the

same. So, now we can see that it is still doing the same thing but our fragment no longer

depends on the activity and our fragment is now totally independent. So, this is a better way

of doing passing the data using fragment arguments, so now let us see our our application one

more time.

So, I am clicking on Report1, then I am clicking back. Now, currently the Report1 is

unchecked, let me put a check here and come back, ok so it is still unchecked. So what is

happening is that I am modifying my report detail but and these changes are saved in my

program but when I am returning my RecyclerView it is still unchanged and what I need to

do is that I need to inform the adaptor of my RecyclerView that the data has changed so that

it can refresh the data and reload the list. As we have solved this problem earlier we will try

to solve it by writing some code. Essentially we will have to modify the onResume method

which is called when an activity is destroyed by pressing the back button and then we create

it. So, let us see what we write so let us go to the report list fragment and so far we had not

overridden the onResume but now there is a need for it.

(Refer Slide Time: 26:02)

So, we override super.onResume and all we have to do is to call this update UI method

because this is what needs to be called. So, update UI method, so we have called it. Now,

another thing which we need to do is we need to do a smaller change in it because now we

are here calling it in the onResume as well. So just a little bit of housekeeping code which

says if mAdaptor = null than do the same thing we have been doing so far.

But, else just do call a method which is called NotifyDatasetChanged. So, this method is

there to make sure that the adaptor reloads it and now let us try to see that what happens

when we run our program now. So, we made just very small change by onResume which we

did and just to take care of the change.

(Refer Slide Time: 27:41)

So, now we click program here we go so as you see Report1 is unchecked here click I check

it go back and now it is checked. So, now our program is a complete program where we have

going from the list of details to the details coming back everything is in sink and everything

is working. Now, in this case if you remember when we were discussing activities and Intent

then we said you know what if you want a result back then you have to start an activities

differently. But, if you do not want the result back then you have to start an activity

differently.

Same thing here, here we did not need to get results, while we were working. But if we wore

working it then we would have to start our activity differently. Essentially, calling the method

start activity for result and then modifying the onActivity result method to retrieve the result

value. This thing we did not need here, but you may need in your other programs, the

fundamentals are same as we studied in activity for the fragment as well. So, thank you and

let us do some more coding in another class, where we will be adding more functionalities to

this program, so thank you.

