
Mobile Computing

Professor Pushpendra Singh

Indraprastha Institute of Information Technology Delhi

Lecture 31

Services

Hello, welcome to your new class. Today we will learn about services. As explained to you

earlier services are one of the 4 app components. So far we have studies activities in detail,

today we will discuss and study services, so let us get started.

(Refer Slide Time: 0:43)

So a service is an application component that can perform long-running operations in the

background and does not provide a user interface, so this is the major difference between a

service and an activity, activity provides the user interface service does not provide the user

interface. So services are useful for example when you want to download a file. Now just like

activities another application component can start a service and once the service is is started it

will continue to run in the background even if the user switches to another application. This is

another difference then the activity.

Now additionally on top a component can bind to a service to interact with it and even

perform interprocess communication. We will discuss this in detail in some another class but

here the service a very briefly let us discuss here the service sort of is providing as a

interprocess communication. That is making two processes talk to each other, so you bind to

a service and then you can interact with the service. So for example a service might handle

network transactions, play music, perform file I/O, or interact with a content provider, all

from the background. So services are very very useful component for an Android applications

and today we are going to understand how they work.

(Refer Slide Time: 2:33)

Now there are primarily two types of service forms, so the first is that what we call as started.

So a service is started when an application component such as an activity or another service

starts it by calling startService(). So once started a service can run in the background

indefinitely even if the component that started it is destroyed. That is the life cycle of the

service is different than the life cycle of the component. If you remember earlier when we

were discussing fragment and activities, fragment dependent on activity.

So a fragment was very decided by the activity. But services this is not the case, even though

a service is started by an application component, the service may live even beyond then what

the component that started it. So usually a started service performs a single operation and

does not return a result to the caller. The single operation could be downloading or uploading

a file, it could be playing the music. Now ideally you should design a service in such a way

that once the operations complete the service should stop itself, we will discuss it very soon.

(Refer Slide Time: 4:04)

Another form of services is what we call a service is “bound”. A service is bound when an

application component binds to it by calling a special method named as bind service. Now as

discussed earlier a bound service offers a client-server interface that allows components to

interact with the service, send requests, get results, and even do so across processes with

interprocess communication. So a bound service (()) (04:37) provides you a nice set of

services around the IPC. And bound service unlike the started service runs only as long as

another application component is bound to it, so if there is no application component bound

to it the service is destroyed. So this is different than started service, where it is not destroyed

even when the component which is started it has been destroyed.

And bound service the movement no other application component is bound the service also

get destroyed. And multiple components can bind to the service at once however at least one

component must be bounded to the service in order for the service to left soon. As long, so as

soon as there is no component bound to a service is destroyed.

(Refer Slide Time: 5:41)

Now let us discuss something more about services. So any application component can use the

service just as we discussed earlier. Earlier, in previous lectures we were told what are the

application components these are primarily activity, services, background receivers and

content providers. So any application component can use the service even from separate

applications similar to an activity in the same way that any component can use an activity.

And in fact the method of starting a service is also very similar to the method that we learn

when we wanted to start an activity. That is we can start a service by intent. So we can use an

intent and we can start the service. Now you can declare a service as private in the manifest

file and you can block access from other applications, so this is one difference between

services and applications.

In applications also you can try to control it by using intent filters, etc, but service you can

declare as private. So a service runs in the main thread of its hosting process. And the service

does not create its own thread and does not run in a separate process, so what does it mean.

So very soon in the next lecture we will learn more about processes and threads but if you go

back to your operating system knowledge then usually there is a process running on its own

in the main thread and unless you start a separate thread everything runs in the main thread.

Now this makes the execution more predictable and more understandable however, if there is

a long running task then the specially for the UI type of work the UI suffers. So similarly,

when we are creating a service here the service will run in the main thread of its hosting

process and does not create its own threads so this is something to remember. So if your

service is going to do any CPU intensive work or blocking operation, you should create a

new thread within the service to do that work, if you do not do it service will keep running in

the main thread and then the main thread will get occupied and the activity is of the service

and that may hurt the experience of the user and that may hurt the performance of your

application.

(Refer Slide Time: 8:22)

Now let us get started with the basics of the service, so what do we need to do if we want to

let us say create a service. So we learned how to create an activity, we learned how to create a

fragment, now we are trying to learn how to create a service. So creating a service is also

very easy, we create a subclass of service, you override some call-back methods just like in

case of activities in fragments and then for the bound service for the bound services only we

also provides a mechanism for components to bind to the service. So by doing these three

operations or mainly two operations you can start a service. Now let us have a look at the

service call back methods and we will only look at the important call back methods.

(Refer Slide Time: 9:15)

So there are 4 important callback methods for service onStartCommand(), onBind(),

onCreate() and onDestroy(). Now let us get started with the first method the

onStartCommand().

(Refer Slide Time: 9:35)

Now the system calls this method when another component such as an activity request that

the service we started by calling start service. Now please try to pause yourself here and think

that what happens in case of activity and you will find some similarities. Now once this

method executes the services is started and can run in the background indefinitely. So if you

are implementing this method it becomes your responsibility that is the responsibility of the

developer to stop the service when the work is done by either calling stopSelf() or by calling

stopService(). Now if you only want to provide binding and not the started services we

discussed earlier we do not need to implement this method. Now let us move on to the

second method.

(Refer Slide Time: 10:49)

The second important method is the onBind() method. So the system calls this method when

another component wants to bind with the service (such as to perform RPC), by calling

bindService(). Now in your implementation of this method, you must provide an interface

that clients use to communicate with the service, by returning an IBinder. And you must also

implements this method, but if you do not want to allow binding, then you should return the

null. So we always implement onBind() if you want a bounded service, we return the correct

type otherwise we just return null.

(Refer Slide Time: 11:34)

Then there is this onCreate() method which is kind a similar to the to our earlier studied

onCreate() methods. Now the system calls this method when the service is first created, so

this is same as that was the case with the activity to perform one time setup procedures. And

before the system calls either onStartCommand or onBinds(). So the on onCreate is the first

method that is called by the system when the service is first created. Now if the service is

already running that is some other app component has started the service, then obviously this

method is not complete.

The fourth method is the onDestroy() method. The system calls this method when the service

is no longer used and is being destroyed. So your service should implement to clean up any

resources such as threads, registered listeners, receivers, etc, when you get the call to the

onDestroy(). Now if a component has started a service by calling start service then the service

remains running until it stops itself with either stopSelf() or another component stops it by

calling stop services. And if a component calls bind service to create the service, then the

service runs only as long as the component is bound to it or any component is bound to it. So

once the service is unbound from all clients then the system destroys itself.

(Refer Slide Time: 13:18)

Now Android system itself will force-stop a service only when memory is low and it must

recover system resources for the activity that has user focus. Now try to remember here the

activity has a user interface, service does not have a user interface. So if the memory is low

and the system must recovers system resources the Android system will force stop an service

in order to keep alive an activity. Now if the service is bound to an activity that has user

focus, then obviously it is less likely to be killed and if the service is declared to run in the

foreground then it will almost never be killed.

So we will very soon come on the foreground services, but you can understand that if the

service is bound to an activity that has the focus there is no advantage of killing it. Otherwise,

if the service was started and is long running, then the system will lower its position in the list

of background tasks over time that is kind of reduce the priority and service will become

highly susceptible to killing. That is if the system needs resources it will kill the service. So it

is your responsibility that if the service is started then you must design it to gracefully handle

restarts by the system. Now if the system kills your service, it restarts it as soon as resources

become available again there is a slight catch here because it also depends on the value you

return from onStartCommand() but we will discuss it very soon

(Refer Slide Time: 15:45)

Now this was all about basics of service and as you may have guessed that services have

many thing in common with activity as far as the concepts are concerned and the major

difference between service and activity is that while activity has a user interface the service

will does not have a user interface. Now let us see that how can we work with services that is

how do we write programs that uses services. So the first step just like last time for activities

you declare a service in the manifest. Here is an example of a very basic manifest file it starts

there is an application tag and inside that application tag I have a service with the name of

ExampleService that is it my manifest will include as we know all the app components, so

my manifest will also include the services that my application has.

(Refer Slide Time: 16:20)

Now in order to create a started service as we discussed is the one that another component

starts by calling startService() and this call to the startService() results in a call to the service

onStartCommand() method. In case of started service, the service must stop itself when its

job is done by calling stopSelf(), or another component can stop it by calling stopService().

(Refer Slide Time: 17:03)

Now for creating a started service traditionally there are two classes you can extend to create

a started service. The first class is the service class itself which is the base class for all

services. And when you extend this class it is important that you create a new thread in which

to do all the service work. As I explained earlier that service runs in the main thread and if the

service is doing CP intensive work then it affects the UI. So when you extend the service

class you create a new thread in which to do all the service work. Now the second method is

to by extending intent service, so intent service is a subclass of service that uses a worker

thread to handle all start requests one at a time. So the service was the base class and the

intent service is a subclass. In service it was in the main thread, in intent service it is using a

worker thread.

Now the intent service is the best option if you do not require your service to handle multiple

requests simultaneously. Means your service is of the type where you know that there will not

be scenario when you will have multiple request simultaneously in that case intent service is

much better and easier way to do this. So all you need to do will be to increment the

onHandleIntent(), which receives the intent for each start request so you can do the

background work.

(Refer Slide Time: 18:57)

Now let us look at how we first create a service by extending the intent service class. This is

an easier method very easy to understand, very easy to implement. So what do we do create a

default worker thread that executes all intents delivered to onStartCommand() separate from

your applications main thread. Another thing that it does it to create a work queue that passes

one intent at a time to your onHandleIntent() implementation, so that you do not have to

worry about the multi thread. So intent service is already doing a lot and then it stops the

service after all start requests have been handled, so you will not have to call stopSelf().

Intent service also provides default implementation of onBind() that return null. If you

remember, there was a condition we do not bind that we must override in even if we have to

return null it looks like that intent service already does it.

(Refer Slide Time: 20:40)

And then intent service also provides a default implementation of onStartCommand() that

sends the intent to the work queue and then to your onHandleIntent() implementation. Here is

a simple example of the intent service extension to create a service. So let me start from the

very beginning. So there is a public class HelloIntentService extends IntentService. We

require few things, number one is that we do require a constructor and this constructor must

call as super constructor with the name for the worker thread. So here it is, we have a

constructor which is called as the super constructor.

(Refer Slide Time: 21:09)

Now the intent service calls this method from the default worker thread with the intent that

started the service and when this method the onHandleIntent returns IntentService stops the

service as appropriate. So the second step that we have to do is to override the

onHandleIntent, we do not do much we take the onHandleIntent and inside that actually

speaking this is where you will be doing the actual work but because we are only

demonstrating the concept we are just saying “Hey go and sleep for 5 seconds” and that is it,

so that is the work that we are doing using the method.

(Refer Slide Time: 22:00)

Now let us come to the second method of extending the service class instead of extending the

intent. Now when we have such a simple method of using of extending intent service why

would be like to extend the service class itself. So here is one reason giving to you, if you

require your service to perform multi-threading, ok instead of passing start requests through a

work queue, then you need to extend the service class to handle each intent.

(Refer Slide Time: 22:53)

So let look at an example this is a rather long example so yes. Here we are trying to create a

service by extending the base class service. I will only go through some of the major topics,

so for example here we have to create a handler that receives a message from the thread, we

will come to it later.

(Refer Slide Time: 23:04)

So let us see our first override, our first override method is the handleMessage() method and

here again just to demonstrate we are only download we are only sleeping for 5 seconds and

then we stop the self-service but more importantly let us look at some of the other methods

specially I am interested in the onCreate() method.

(Refer Slide Time: 23:32)

So the onCreate() method is what starts up the thread running the service. So we are creating

separate thread because the service normally runs in the main thread which we do not want to

block and that is we do not want run the service in the main thread and we want to make it a

backend thread so that we can even we can do CPU-intensive work. So it is still find we

create a backend thread in the thread, thread type and then we start the thread. Then we get

the HandlerThreads looper and use it for our handler. This is the same same looper

ServiceHandler that we had described earlier.

(Refer Slide Time: 24:44)

And then let us look at some other metghod that we have overridden. Another method is this

onStartCommand() method, here we are just displaying a toast, so yes we do the toast and we

know which request we are stopping when we finish the job. And if we get killed we are

returning something so first thing so here is the most important thing to look it is that what

are we returning from onStartCommand() we return an int and this int has takes three values

one of the value is START_STICKY and very soon we will see that what other two values

are and what is the meaning of this method.

(Refer Slide Time: 25:28)

And then there is just a onBind() because we are just returning null and then there is

onDestroy() where again we are just displaying toast. So let us go back to this method

onStartCommand() in the int value that it is returning because that is the important bidding.

(Refer Slide Time: 25:50)

 So it can return one of the three things, one the first is START_NON_STICKY this means

that if the system kills the service after onStartCommand() there is no need to recreate the

service unless there are pending intents to deliver. The second is the START_STCIKY and if

the which means if the system kills the service after onStartCommand() we create the service

and call onStartCommand() but do not redeliver the last intent instead the system calls on the

onSystemCommand() with the null intent.

Then the third is the START_REDELIVER_INTENT in which if the system kills the service

after onStartCommand() it returns recreate the service and call onStartCommand() with the

last intent that is it sort of repeats everything. Now looking at the code you saw that how

much easier it was by using by extending just intent service compare to by extending the

service itself.

(Refer Slide Time: 27:10)

Now let us see that how do we start a service. So starting a service is same as starting an

activity and it is very much the same thing. So you create an intent and from that intent then

after you call the start service and then you pass the intent to it. So the start service method

will return immediately and the Android system will call a service onStartCommand()

method. Now if the service is not only running the system first calls onCreate() and then calls

onStartCommand().

(Refer Slide Time: 27:53)

Now once a service is started the system does not stop or destroy the service unless it must

recover system memory and the service continues to run. I am emphasizing it again and again

because this is very important point to remember that once you start a service, does not stop

by itself and you must make the provisions so that the service stops either by calling

stopSelf() from the service itself or another component calling stop by calling stopService().

So once requested to stop with stopSelf() or stopService(), the system destroys the service as

soon as possible.

(Refer Slide Time: 28:43)

Now so far we were talking about creating a started service now let us also discuss a little bit

of about creating a bound service. As we saw earlier bound service was mainly for IPC

communication and to bind other components to the service. Now a bound service is one that

allows application component to bind to it by calling bind service in order to create a long-

standing connection. And one should create a bound service only when you want to interact

with the service from activities and other components in your application or to expose some

of your application functionality to other application through IPC. Now in order to create a

bound service you must implement the onBind() callback method, remember in other cases

we return a null but here we will not return a null.

This method should return an IBinder that defines the interface of communication with the

service, so what does it mean by interface communication with the service. As you know that

this service needs to talk with other components. If they need to talk then there must be an

interface over which we take talk and they can understand and this is the interface that we are

talking about.

(Refer Slide Time: 30:03)

In other application component can then call bindService() to retrieve the interface and begin

calling methods on the service. The bound service is pretty much like an IPC where you get

the interface you find out how to interact with the service and then you start interacting with

the service. Now service can send notification to the user in two ways, number one is a toast

notification as we saw in our math quiz example and number two the status bar notification,

so if you have been using Android phone you can see the status bar some of the messages

which you see. So this is one of the method where which a service can talk to the user. So if

there was a service which is for downloading a file after it has downloaded it can possibly set

a status bar notification.

(Refer Slide Time: 30:45)

Now, earlier we said that services run without the user interface in the background, you can

actually run a service in the foreground as well. So a foreground service is a service that is

considered to be something the user is actively aware of, for example I want to play the music

so I would like the user to be actively aware of this. And because the foreground service is

something a user is actively aware of, it is definitely therefore not a candidate for the system

to kill when the system is low on memory. Now a foreground service must provide a

notification for the status bar, which is placed under the Ongoing heading, which means that

the notification cannot be dismissed unless the service is either stopped or removed from the

foreground.

(Refer Slide Time: 31:36)

Let see, now let us see a program example of running a service in the foreground. So here is

notification that must come and the most important thing to observe here is the this method

startForeground(ONGOING_NOTIFICATION_ID, notification). So notification is the way

to indicate the user and start foreground is the way to start the services in program.

(Refer Slide Time: 32:18)

Now let us look at the lifecycle of a service, the lifecycle of a service is normally much

simpler than that of an activity as we saw that activity lifecycle is depends very much on how

user is interacting with the user interface that is provided by activity and because service does

not provide a user interface the lifecycle of a service becomes much easier. So the service

lifecycle that is when it is created to when it is destroyed can follow two different paths

depending on the form of the service.

So if it is a started service then it is created when another component calls startService(). And

then it runs indefinitely till either it calls stopSelf() or another component call stopService().

When the service is stopped, the system destroys it. On the other hand, the bound service is

created when another component calls bind service and the client then communicates with the

service through an IBinder interface, the client can close the connection by calling

unbindService() and the multiple clients can bind to the same service when all of them

unbind the service which is destroyed by the system itself.

(Refer Slide Time: 33:50)

Now let us look at the simple lifecycle callback methods. This is a very very simple example

only giving you a very small idea of (the) how these methods look like there is onCreate(),

onStartCommand(), onBind(), onUnbind(), onRebind(), onDestroy() and as we did in the

activity it has the good practice that when you write your first service program just override

them put a long message here, so that we know when these methods are being called.

(Refer Slide Time: 34:23)

Here is a graphically representation of these methods as you see that call to startService()

comes onCreate() comes, so here is when the service is running that is after the

onStartCommand() and when the service is stopped by itself or a client for onBind() again

after the onBind() command and when the last onUnbind() is being called, then service call

onDestroy(), onDestroy() is calling by services shut down. So this was all about services

which is one of the most important app component besides activities I have given you small

program (()) (34:58) in this video. I would soon be uploading a program running a service,

but before that you can actually use this (()) (35:06) and create your own program where you

create a service and maybe do not do much but just override on the callback methods and put

a long messages and then just try to see the lifecycle of a service, thank you.

