Mobile Computing
Professor Pushpendra Singh
Indraprastha Institute of Information Technology Delhi
Lecture 29
Saving Data in SQL Databases

Welcome everyone; in last lecture we saw how to store a very little amount of data using
Shared Preferences, then we also saw how to store data using files. Today we will learn how
to store data using the SQLite database that is available with android devices and with
android operating system. SQLite database is a lite weight database version of the normal
SQL databases. So if you are familiar with SQL databases you will find some of that

knowledge useful here as well.

(Refer Slide Time: 1:02)

o~

.l " AR A ‘ntra ~+ Hirs
Schema and Contract D

* Schema: a formal declaration of how the database is organized.

* The schema is reflected in the SQL statements that are used to create the
database.

* Contract class: explicitly specifies the layout of your schema in a
systematic and self-documenting way

* A contract class is a container for constants that define names for
URIs, tables, and columns.

* The contract class allows you to use the same constants across all the

-, Otherclasses in the same package.
[| 7¢
o \s,

Let us get started as you know the most important thing at the database is schema. Schema is

nothing but how a data is organized. So we will see that how to create a good schema and
how to reflectthat schema in this SQL statements that we use. So in SQL.ite database just like
SQL databases we have we will have a schema which will be reflected in our SQL
statements. And we will also have a contract class, the contract class here explicitly specifies
the layout of our schema in a systematic and self-documenting way. So that looking at the
contract class can give us a intuition about what kind of schema that we are using. So for
example the contract class is used as a container for constants that define names for URIs,

tables, columns.

(Refer Slide Time: 2:24)

Schema p

_id uuid title date solved
13090636733242 | Stolen yogurt | 13090636733242 0
13090752131909 Dirty sink 13090732131909 1

-

~

public class CrimeDbSchema {
public static final class CrimeTable
public static final String NAME = "crimes";

public static final class Cols {
public static final String UUID = "uuid";
public static final String TITLE = "title";
public static final String DATE = "date";
public static final String SOLVED = "solved";
4 11 3 }

J &
source: Android Programming: The Big Nerd Ranch Guide (2nd Edition))

So we go through these names, we can understand that what kind of tables, columns, Uri are

present in our database. And because we are using a contract class we can use the same
constants across other classes in this. So here is our simple example, suppose this is the table
that we want to store in our program. Now this table has 4 fields, one is a uuid, one is a title,
one is a date, one is a solved field. There is also a Id field which we would ideally like to get

automatically generated.

Now in this you can see that we have to store this four values uuid, title, date and solved. So
for example, this could be our schema where we can say that there is a final String UUID,
TITLE, DATE and SOLVED and these are the values that it holds. Now if | look at it I can
very easily see that what kinds of calls I am going to have because by just by looking at this |
can say that you know in the my column entries would be divided into UUID, TITLE, DATE
and SOLVED.

(Refer Slide Time: 3:23)

Schema and Contract I

e A gOOd Way to organize public final class FeedReaderContract {
a contract class is to pUt //To prevent someone from accidentally instantiating the contract class,

definitions that are // make the constructor private,
lobal to your ythole :
gatabase in the root private FeedReaderContract() {}
level of the class.
* Then create an inner /¥ Inner class that defines the table contents */

class for each table that public static class FeedEntry implements BaseColumns {

enumerates its s
public static final String TABLE_NAME = "entry";

columns.
. By implementi ng the public static final String COLUMN_NAME_TITLE = "title";
BaseColumns interfa ce, public static final String COLUMN_NAME_SUBTITLE = "subtitle";

your inner class can)
inherit a primary key |
field called _ID

m

So a good way to organize a contract class is to put definitions that are global to your whole

database in the root level of the class. So once you do this then that is accessible to
everything else in your program. And then for each table we create an inner class, so just like
here this was one of the tables of our database. And for this one of the table we created an
inner class or we can see the example here for one, so this is our top level class and then for
each (cla) and then for each table we create an inner class. So just like here. Now what
android also provides us that we can implement an interface called BaseColumns and this
will automatically give us the primary key field_ID. So as you saw earlier we were ignoring
it because we knew that we can get it directly by just implementing the BaseColumns

interface.

Now you can see that for each table we will be creating an inner class. Try to think that why
do we do this, what is the advantage of it and what is the disadvantage of it. Your hint is to
think that what is the advantage of having an inner class in java and why do we have inner
classes in java. If you can think in that direction you can think what the advantage of this

approach is.

(Refer Slide Time: 5:12)

Creating a database [y

private static final String TEXT TYPE =" TEXT";

private static final String COMMA_SEP ="";

private static final String SQL_CREATE_ENTRIES =
"CREATE TABLE " + FeedEntry.TABLE_NAME + " (" +
FeedEntry._ID +" INTEGER PRIMARY KEY," + \
FeedEntry.COLUMN_NAME_TITLE + TEXT_TYPE + COMMA_SEP +
FeedEntry.COLUMN_NAME_SUBTITLE + TEXT_TYPE +")";

private static final String SQL_DELETE_ENTRIES =

"DROP TABLE IF EXISTS " + FeedEntry.TABLE_NAME;
7} | 9

Now let us look at creating a database through some basic example. We will try to create the

same database that we are creating that is we would like to have an entry called title and an
entry called subtitle. So let us first initialize few things, as you will see in this examples that
mainly we are trying to run SQL statements, so that is how our database works. So let us start
from the beginning we have a static final String TEXT _TYPE, then a
COMMA _SEPARATOR, then a String called SQL_CREATE_ENTRIES in that we are
giving commands such as like CREATE TABLE as we know this is a valid command and
then we are entering the TABLE_NAME some more values and then we have our
COLUMN_NAME_TITLE and COLUMN_NAME_SUBTITLE, which we earlier choose
COLUMN_NAME_TITLE and COLUMN_NAME_SUBTITLE.

(Refer Slide Time: 6:26)

Creating a database e

\
public class FeedReaderDbHelpeI&(ends SQiteOpenHelper { public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {
111 you change the database schema, you must increment the database // This database is only a cache for online data, so its upgrade policy is
version,

//to simply to discard the data and start over
public static final int DATABASE_VERSION = 1;

db.execSQL(SQL DELETE_ENTRIES);
public staic inal String DATABASE_NAME = *FeedReaderdb’;
onCreate{db);

)

public FeedReaderDbHelper{Context context) {

super{context, DATABASE_NAME, null, DATABASE_VERSION);
)
public void onCreate(SQLiteDatabase db) {

public void onDowngrade(SQLiteDatabase db, int oldVersion, int newVersion) {
onUpgrade(db, oldVersion, newVersion);
)
)

db.execsQL(SQL_CREATE_ENTRIES);
)

W 4" X

And similarly we have the SQL statement for deleting a table which is called dropping a table

as we know from our SQL knowledge. Now let us look and that how do we actually create it,

so we will go through this code, the only thing that we need to do is to extend few functions.
So one of the methods that we need to definitely extend is the onCreate ok. So here again we

have a static int DATABASE_VERSION and then we can have a DATABASE _NAME
FeedReader here.

(Refer Slide Time: 7:09)

Creating a database [y

private static final String TEXT TYPE =" TEXT";

private static final String COMMA_SEP =",";

private static final String SQL_CREATE_ENTRIES =
"CREATE TABLE " + FeedEnt(y.TABLE_NAME +"("+
FeedEntry._ID + " INTEGER PRIMARY KEY," +

FeedEntry.COLUMN_NAME_TITLE + TEXT_TYPE + COMMA_SEP +

FeedEntry.COLUMN_NAME_SUBTITLE + TEXT_TYPE +")",

For example, the FeedReaderDbHelper nothing we need not to do anything. We are only

private static final String SQL_DELETE_ENTRIES =
"DROP TABLE IF EXISTS " + FeedEntry.TABLE_NAME;

L

concerned about this method called onCreate and what are we doing in onCreate, we are

executing the SQL of this string which we set up in our last slide. SQL create entries so this is

our SQL command that we want to execute on the onCreate. So this SQL command is
equivalent to saying CREATE TABLE give the TABLE_NAME we have the
TABLE_NAME here and then create the table Entry ID INTEGER PRIMARY KEY, then
gives the COLUMN_NAME_TITLE and SUBTITLE ok.

(Refer Slide Time: 8:12)

SQLiteOpenHelper i

* Create a subclass that overrides
* onCreate()

» onUpglade()

* onOpen() callback methods.

* You may also want to implement onDowngrade(), but it's not
required.

%)

So this method when it runs, it runs the SQL command and creates our database. Similarly,

we can extend the method called onUpgrade and onDowngrade, which upgrade and
downgrade our database as new from our databaseknowledge. So just to revise we create a
sub subclass that overrides onCreate(), onUpgrade(), onOpen() callback methods. We just
saw the onCreate views here and here our class is FeedReaderDbHelper, which is a subclass
of SQLiteOpenHelper and that is it, that is all needed to create a SQL.ite database in android.

(Refer Slide Time: 8:39)

Rt o Padal son o IR o —
Accessing a Database ana Writing D
FeedReaderDbHelper mDbHelper = new FeedReaderDbHelper(getContext());
R
// Gets the data repository in write mode
SQLiteDatabase db = mDbHelper.getWritableDatabase();

// Create a new map of values, where column names are the keys
ContentValues values = new ContentValues();
values.put(FeedEntry.COLUMN_NAME_TITLE, title);
values.put(FeedEntry.COLUMN_NAME_SUBTITLE, subtitle);

// Insert the new row, returning the primary key value of the new row

long newRowld = db.insert(FeedEntry.TABLE_NAME, null, values);
D) ! @

Now let us look another example of excessing the database and writing to it. So we go to our

%

class object we create a class object FeedReaderDbHelper. We get the data repository in
write mode, so from our mDbHelper we get the writableDatabase() now our database is in the
write mode. After that what we will do is that we will create a map of values and then we will
insert this into our database. So our map of values refers to the each row and then we will be
inserting these rows. So as you know we had only two entries TITLE and SUBTITLE, so our
map will also have only these two values so we are putting
FeedEntry. COLUMN_NAME_TITLE, title and SUBTITLE subtitle. So now we have put
these two values and then so we now have a row created separately and we now want to

insert this row into our database.

So now we do a simple db.insert in which we give the TABLE_NAME, null means that do
nothing if there is if the map is not correct or if the map is not valid and then we insert the
map which we created earlier. So essentially what we are doing is that we are inserting a row
with values given in the (()) (10:07) map into this TABLE_NAME. Now after this line our
database will have a new row with the values entered here. So it is really very simple to

create a database and write to it.

(Refer Slide Time: 10:32)

Read Information 9

SQLiteDatabase db = mDbHelper.getReadableDatabase();

// Define a projection that specifies which columns from the database
// you will actually use after this query.
String[] projection = {
FeedEntry._ID,
FeedEntry.COLUMN_NAME_TITLE,
FeedEntry.COLUMN_NAME_SUBTITLE

b

/[Filter results WHERE "title" = 'My Title'
String selection = FeedEntry.COLUMN_NAME_TITLE + " =?";
String]] selectionArgs = { "My Title" };

19%3
o

Now suppose we want to read, as you know that in databases whenever we want to read we
have to signify that how what we want to read so we have to give criteria of reading. And
then we will have to also show that how do we want to see the information that we have just
wrote. So for example, to start with we will start with our database we will get a readable
version. So last time if you remember we had got the writable, now we are getting a readable.
And then we will define a projection that specifies so we define a projection that specifies
which column from the database and let us see but this projection will be used only after this
query, so what we want we want the TITLE and the SUBTITLE with respect to particular 1D.

(Refer Slide Time: 11:56)

Read Information e
// How you want the results sorted in the resulting Cursor
String sortOrder = FeedEntry.COLUMN_NAME_SUBTITLE + " DESC";
Cursor ¢ = db.query(
FeedEntry.TABLE_NAME, /[The table to query
projection, // The columns to return
selection, // The columns for the WHERE clause
selectionArgs, // The values for the WHERE clause
null, // don't group the rows
null, // don'tfilter by row groups
sortOrder /[The sort order
)
cursor.moveToFirst();
long itemid = cursor.getLong(
cursor.getColumnindexOrThrow(FeedEntry,_ID)
]
£ }

4

Now we so our criterion is that we want to get the value of all the rows where the Title value
is equivalent to My Title. So that is our WHERE those are few who have done database and |
believe that every one of you have done database knows that this is a very simple way to get
anything from a SQL database. Then our string selection we simply initialize after that we
give an argument where in the next line we define our sorting order and we are saying to
return it in the DESCENDING sorting order, then we do the query. So when we do the query
we get the result into what we call as a cursor so let us see what is our query. We give the
TABLE_NAME that is the table name that we want to query. We get the projection that is the

column that we want to get return.

We gives the columns for the WHERE clause and the values for the WHERE clause that is
what we described here the WHERE clause, ok, the columns and the values, so here we give
the column and here we give the values and then we do not want to group the rows or we do
not want to filter by the row groups and then we define the sortOrder that we declared as
DESCENDING. Once we get this curser we can start reading from the curser. So now this
will contain all the values we have the title is equal to (()) (13:01). So as you can see that it is
very easy to create a database read it and write it. Now let us see a very simple way of
updating a set SQL SQL.ite database.

(Refer Slide Time: 13:14)

~ A At IS
Update D
SQLiteDthabase db = mDbHelper.getReadableDatabase();
// New value for one column
ContentValues values = new ContentValues();
values.put(FeedEntry.COLUMN_NAME_TITLE, title);
// Which row to update, based on the title
String selection = FeedEntry.COLUMN_NAME_TITLE + " LIKE ?";
String[] selectionArgs = { "MyTitle" };
int count = db.update(
FeedReaderDbHelper.FeedEntry.TABLE_NAME,

values,
selection,

\ selectionArgs); "
it) \ @

So updating a SQL.ite database again is very easy, we get our database instance and we will
have to create new values for one column that will be the column that we want to update. So
just earlier as in case of writing we are doing to create a value we do a value put and after that
we again define the criteria that which column we want to update. So we define a selection

criteria and selection arguments and then we do a db.update where we give the
TABLE_NAME, the value that we want to update and the columns that we want to update

based on the criteria, so this will update our column.

(Refer Slide Time: 14:04)

Deleting Information [y

// Define 'where' part of query.

String selection = FeedEntry.COLUMN_NAME_TITLE + " LIKE ?";
// Specify arguments in placeholder order.

String[] selectionArgs = { "MyTitle" };

// Issue SQL statement.

db.delete(FeedEntry.TABLE_NAME, selection, selectionArgs);

N
>

If we want to delete this is again very easy we have to just find out the right columns to delete
and then we can issue that delete command. Again as you see that the selection,

selectionArgs are here given, let us quickly go back in revise how we had been using them.

(Refer Slide Time: 14:29)

Read Information 1[5

SQliteDatabase db = mDbHelper.getReadableDatabase();

// Define a projection that specifies which columns from the database
// you will actually use after this query.
String(] projection = {
FeedEntry._ID,
FeedEntry.COLUMN_NAME_TITLE,
FeedEntry.COLUMN_NAME_SUBTITLE

I

// Filter results WHERE "title" = 'My Title'
String selection = FeedEntry. COLUMN_NAME_TITLE + " =?";

String|] selectionArgs = { "My Title" };
£ \§ N
1

So we started using them from the read, so the selection was giving us the

COLUMN_NAME_TITLE and selection arguments was giving us the values inside that

column. And this is the similar way we want to use it everywhere so when we wanted to read
or all the values that are the title was equal to MyTitle we gave it then the read then we
wanted to update where title was Mytitle we give it and update and we want to delete where
titles MyTitle read of the delete.

(Refer Slide Time: 14:53)

References D

* https://developer.android.com/training/index.html

* Android Programming: The Big Nerd Ranch Guide (2nd Edition) by Bill
Philips and Chris Stewart

* https://www.bignerdranch.com/we-write/android-programming/

* Core Java Volume |--Fundamentals: 1 (Core Series) by Cay S.
Horstmann
. http://horstmann.com/;orejava.html

S’

So this was all about using a SQLite database using SQL database or using files is your
choice both have their pros and cons, so whether you should read a file or SQL.ite you should
first ask that what kind of data are you going to save. If there is no structure in the data for
example, there is no way you can create a table out of your data then it is good to just store a
file (()) (15:18). But if there is a structure in the data then it may be good to use the SQLite
database, thank you.

