
Mobile Computing

Professor Pushpendra Singh

Indraprastha Institute of Information Technology Delhi

Lecture 29

Saving Data in SQL Databases

Welcome everyone; in last lecture we saw how to store a very little amount of data using

Shared Preferences, then we also saw how to store data using files. Today we will learn how

to store data using the SQLite database that is available with android devices and with

android operating system. SQLite database is a lite weight database version of the normal

SQL databases. So if you are familiar with SQL databases you will find some of that

knowledge useful here as well.

(Refer Slide Time: 1:02)

Let us get started as you know the most important thing at the database is schema. Schema is

nothing but how a data is organized. So we will see that how to create a good schema and

how to reflectthat schema in this SQL statements that we use. So in SQLite database just like

SQL databases we have we will have a schema which will be reflected in our SQL

statements. And we will also have a contract class, the contract class here explicitly specifies

the layout of our schema in a systematic and self-documenting way. So that looking at the

contract class can give us a intuition about what kind of schema that we are using. So for

example the contract class is used as a container for constants that define names for URIs,

tables, columns.

(Refer Slide Time: 2:24)

So we go through these names, we can understand that what kind of tables, columns, Uri are

present in our database. And because we are using a contract class we can use the same

constants across other classes in this. So here is our simple example, suppose this is the table

that we want to store in our program. Now this table has 4 fields, one is a uuid, one is a title,

one is a date, one is a solved field. There is also a Id field which we would ideally like to get

automatically generated.

Now in this you can see that we have to store this four values uuid, title, date and solved. So

for example, this could be our schema where we can say that there is a final String UUID,

TITLE, DATE and SOLVED and these are the values that it holds. Now if I look at it I can

very easily see that what kinds of calls I am going to have because by just by looking at this I

can say that you know in the my column entries would be divided into UUID, TITLE, DATE

and SOLVED.

(Refer Slide Time: 3:23)

So a good way to organize a contract class is to put definitions that are global to your whole

database in the root level of the class. So once you do this then that is accessible to

everything else in your program. And then for each table we create an inner class, so just like

here this was one of the tables of our database. And for this one of the table we created an

inner class or we can see the example here for one, so this is our top level class and then for

each (cla) and then for each table we create an inner class. So just like here. Now what

android also provides us that we can implement an interface called BaseColumns and this

will automatically give us the primary key field_ID. So as you saw earlier we were ignoring

it because we knew that we can get it directly by just implementing the BaseColumns

interface.

Now you can see that for each table we will be creating an inner class. Try to think that why

do we do this, what is the advantage of it and what is the disadvantage of it. Your hint is to

think that what is the advantage of having an inner class in java and why do we have inner

classes in java. If you can think in that direction you can think what the advantage of this

approach is.

(Refer Slide Time: 5:12)

Now let us look at creating a database through some basic example. We will try to create the

same database that we are creating that is we would like to have an entry called title and an

entry called subtitle. So let us first initialize few things, as you will see in this examples that

mainly we are trying to run SQL statements, so that is how our database works. So let us start

from the beginning we have a static final String TEXT_TYPE, then a

COMMA_SEPARATOR, then a String called SQL_CREATE_ENTRIES in that we are

giving commands such as like CREATE TABLE as we know this is a valid command and

then we are entering the TABLE_NAME some more values and then we have our

COLUMN_NAME_TITLE and COLUMN_NAME_SUBTITLE, which we earlier choose

COLUMN_NAME_TITLE and COLUMN_NAME_SUBTITLE.

(Refer Slide Time: 6:26)

And similarly we have the SQL statement for deleting a table which is called dropping a table

as we know from our SQL knowledge. Now let us look and that how do we actually create it,

so we will go through this code, the only thing that we need to do is to extend few functions.

So one of the methods that we need to definitely extend is the onCreate ok. So here again we

have a static int DATABASE_VERSION and then we can have a DATABASE_NAME

FeedReader here.

(Refer Slide Time: 7:09)

For example, the FeedReaderDbHelper nothing we need not to do anything. We are only

concerned about this method called onCreate and what are we doing in onCreate, we are

executing the SQL of this string which we set up in our last slide. SQL create entries so this is

our SQL command that we want to execute on the onCreate. So this SQL command is

equivalent to saying CREATE TABLE give the TABLE_NAME we have the

TABLE_NAME here and then create the table Entry_ID INTEGER PRIMARY KEY, then

gives the COLUMN_NAME_TITLE and SUBTITLE ok.

(Refer Slide Time: 8:12)

 So this method when it runs, it runs the SQL command and creates our database. Similarly,

we can extend the method called onUpgrade and onDowngrade, which upgrade and

downgrade our database as new from our databaseknowledge. So just to revise we create a

sub subclass that overrides onCreate(), onUpgrade(), onOpen() callback methods. We just

saw the onCreate views here and here our class is FeedReaderDbHelper, which is a subclass

of SQLiteOpenHelper and that is it, that is all needed to create a SQLite database in android.

(Refer Slide Time: 8:39)

Now let us look another example of excessing the database and writing to it. So we go to our

class object we create a class object FeedReaderDbHelper. We get the data repository in

write mode, so from our mDbHelper we get the writableDatabase() now our database is in the

write mode. After that what we will do is that we will create a map of values and then we will

insert this into our database. So our map of values refers to the each row and then we will be

inserting these rows. So as you know we had only two entries TITLE and SUBTITLE, so our

map will also have only these two values so we are putting

FeedEntry.COLUMN_NAME_TITLE, title and SUBTITLE subtitle. So now we have put

these two values and then so we now have a row created separately and we now want to

insert this row into our database.

So now we do a simple db.insert in which we give the TABLE_NAME, null means that do

nothing if there is if the map is not correct or if the map is not valid and then we insert the

map which we created earlier. So essentially what we are doing is that we are inserting a row

with values given in the (()) (10:07) map into this TABLE_NAME. Now after this line our

database will have a new row with the values entered here. So it is really very simple to

create a database and write to it.

(Refer Slide Time: 10:32)

Now suppose we want to read, as you know that in databases whenever we want to read we

have to signify that how what we want to read so we have to give criteria of reading. And

then we will have to also show that how do we want to see the information that we have just

wrote. So for example, to start with we will start with our database we will get a readable

version. So last time if you remember we had got the writable, now we are getting a readable.

And then we will define a projection that specifies so we define a projection that specifies

which column from the database and let us see but this projection will be used only after this

query, so what we want we want the TITLE and the SUBTITLE with respect to particular ID.

(Refer Slide Time: 11:56)

Now we so our criterion is that we want to get the value of all the rows where the Title value

is equivalent to My Title. So that is our WHERE those are few who have done database and I

believe that every one of you have done database knows that this is a very simple way to get

anything from a SQL database. Then our string selection we simply initialize after that we

give an argument where in the next line we define our sorting order and we are saying to

return it in the DESCENDING sorting order, then we do the query. So when we do the query

we get the result into what we call as a cursor so let us see what is our query. We give the

TABLE_NAME that is the table name that we want to query. We get the projection that is the

column that we want to get return.

We gives the columns for the WHERE clause and the values for the WHERE clause that is

what we described here the WHERE clause, ok, the columns and the values, so here we give

the column and here we give the values and then we do not want to group the rows or we do

not want to filter by the row groups and then we define the sortOrder that we declared as

DESCENDING. Once we get this curser we can start reading from the curser. So now this

will contain all the values we have the title is equal to (()) (13:01). So as you can see that it is

very easy to create a database read it and write it. Now let us see a very simple way of

updating a set SQL SQLite database.

(Refer Slide Time: 13:14)

So updating a SQLite database again is very easy, we get our database instance and we will

have to create new values for one column that will be the column that we want to update. So

just earlier as in case of writing we are doing to create a value we do a value put and after that

we again define the criteria that which column we want to update. So we define a selection

criteria and selection arguments and then we do a db.update where we give the

TABLE_NAME, the value that we want to update and the columns that we want to update

based on the criteria, so this will update our column.

(Refer Slide Time: 14:04)

If we want to delete this is again very easy we have to just find out the right columns to delete

and then we can issue that delete command. Again as you see that the selection,

selectionArgs are here given, let us quickly go back in revise how we had been using them.

(Refer Slide Time: 14:29)

So we started using them from the read, so the selection was giving us the

COLUMN_NAME_TITLE and selection arguments was giving us the values inside that

column. And this is the similar way we want to use it everywhere so when we wanted to read

or all the values that are the title was equal to MyTitle we gave it then the read then we

wanted to update where title was Mytitle we give it and update and we want to delete where

titles MyTitle read of the delete.

(Refer Slide Time: 14:53)

So this was all about using a SQLite database using SQL database or using files is your

choice both have their pros and cons, so whether you should read a file or SQLite you should

first ask that what kind of data are you going to save. If there is no structure in the data for

example, there is no way you can create a table out of your data then it is good to just store a

file (()) (15:18). But if there is a structure in the data then it may be good to use the SQLite

database, thank you.

