
Mobile Computing

Professor Pushpendra Singh

Indraprastha Institute of Information Technology Delhi

Lecture 28

Saving Data

Hello, today we will start a completely new topic but a very important one. Most of your

android applications require some data to be saved. So far we have been working on very

simple application which did not have these requirements. However, now we will be

developing applications which will require some data to be saved. Android provides us

multiple ways to save data and retrieve it and in this lecture we will learn about it, so let us

get started.

(Refer Slide Time: 0:57)

So as you see the motivation is very simple we need to save some data. There are 3 multiple

ways 3 possible ways to do it, number one that you can save key value pairs of simple data

types in a shared preference. Number two that you can save a file in the android file system

and today we will learn about android file system in more detail. And number three you can

use a very simple lite way database called SQLite. SQLite is based on SQL databases;

however this is a version which is more suited for the mobile devices. So android provides us

these three ways and today we are going to study them to see what is good in what scenario.

(Refer Slide Time: 2:03)

So let us start with the first one saving key value sets. This can be used to save this to save

preferences there is a type here this is save preferences. The preferences that we save and

later on which may also share are the preferences for example, suppose your application

starts and you want to set a same volume level as the user selected last time or you want to

start your application in the type of orientation that the user selected last time. So this kind of

data is very useful for customizing your application and providing a personalized view of

your application to the user. However, this data must be saved across different instantiation of

your application. So this must be saved in such a way that it is not lost when your app is

closed.

The android provides you a very simple way to save this data by preferences. It is nothing but

a key value set, so internally it uses a MAP from java you know what a MAP is, in this case

this MAP has a key of type String and then the value could be of any other type. And then

using this MAP the values are stored and then using the key the values are retrieved. So this

is the simplest possible way of storing some data in android. Let us quickly see an example

on how it is done. So let me open an example that I have created. Let us first close our

existing project, let us open another project.

(Refer Slide Time: 4:23)

So this is a very simple application that I have developed only to show you the concept of

shared preferences. This application has only one activity which I created using android

studio. Now let us go through the code line by line, so the first line I declare are static final

string which is giving nothing but just a name. So I call it PREFERENCES_NAME and I

give it a name any name is fine. After that I declare a Boolean silent which I declare to be

false. We will use this Boolean value to display our concept. What we want to show is that

this value is preserved across different instantiation of the application. For us this value may

represent that the user when interacting with your application puts the phone on the silent

mode. Now let us see what we are creating in the onCreate folder.

So our onCreate is simple except that when we start our activity we read the shared

preferences, so for that we use the function called getSharedPreferences, we give it a name

and we give it a context as you can see here, so the name is the name given and then the

context. And from that preferences file I do a get Boolean because I want the Boolean value

and I set the silent value, so this will happen whenever my application runs. However for the

very first time this needs also to be stored so we need to also add some data which gets run

when your activity closes down.

So I have added some data in the onStop where I am using the same file and the same mode,

but this time I am using an editor to edit. And using that editor I am using something called

putBoolean() where I am setting the value of the silent mode Boolean value, so that my key is

silent mode where I am setting a true to it while currently there is false. And hopefully once I

have run my application once then it is said to be true. And then it will always return me the

true and if there is some problem then it will return me the false. So let us run this program

and see its execution and try to understand it. So I run the program we choose the same

emulator that I choose always 6P.

(Refer Slide Time: 9:23)

As you see that let me just let me just increase its size let me just rotate it so that you can see

it more easily. What we are looking for are these log messages, so our program is still starting

let us take yes, so now our app is starting and let me set the filter as you will see that the

initial value printed is false. This value has got printed because that initially it is false. Now

let us close this application, let us make sure that the onStop is run and then we will restart

the application and we will hope that it will read from the SharedPreferences file and this

value will be different. So let us press the back button is set hopefully it trend on stop. Now I

will go back to the same app and I will run it.

(Refer Slide Time: 10:16)

And now you can see that the value true is printed because last time when we exited the

execution we shared it in the SharedPreferences our key was silent mode and our value was

true and when we started it we retrieve the value of the silent mode and we printed it, so in

the very first instance it was false but then it is true. Let us run it again and this time again we

only have true.

(Refer Slide Time: 11:19)

And now no matter how many times we stop and run it, it will be true because that is the

value that (()) (11:25). So this example, though very small source you the concept of

SharedPreferences very nicely. Let us go back to the code again, we do not do much we only

use an editor and set the value by using the put method.

(Refer Slide Time: 11:49)

If you see we can have multiple put methods as you can see here we have putBoolean,

putFloat, putInt, putLong, putString, etc, etc. Similarly we will have the get corresponding

get methods for the same, so this is the easiest way in which you can store some data about

your app persistently across different instantiation of your app. Now let us move to the

second method which is more convenient when you want to store more data.

(Refer Slide Time: 12:31)

So saving a file, now many of you must be familiar and we discussed that in the earlier

classes that android is primarily based on a Linux operating system. So internally android is

nothing but a Linux operating system and that is why it uses a file system which is similar to

the file system that you studied in your operating system course. However, there are some

differences because android once on a mobile device one thing which is very particular about

mobile device is this concept of internal storage and external storage.

You may have seen that many mobile devices comes with this extra memory card slot, while

the other mobile devices do not come, so this extra memory card slot is usually called an

external storage and while the internal disk of the mobile is normally called an internal

storage. However, to take advantage of this internal storage and external storage some

devices even when they do not provide the extra memory cards slot divides their internal

storage into two parts that is of internal storage and external storage. We will discuss that

very shortly that why these devices do that and what is the advantage of it. However form the

android side the API behavior remains same whether the external storage is a true external

storage or it is just designated by the device. Now let us see some advantages or

disadvantages or let us say properties of internal storage and external storage.

(Refer Slide Time: 14:28)

So, on the left side it is the internal and on the right side it is the external. So the internal

storage as you know is always available, that is you are always sure that there is some space

available. Even the basic android devices have some storage available for you. On the other

hand, the same assumption cannot be made about the external storage. Number one your

phone may not have an external storage at all that is it may not have a slot for the memory

card or even if it has when you connect your phone to your PC for example, and you mount

the external storage as USB you cannot use it. So the assumption that it is always available is

not true for external storage. Please keep that in mind when you write the code. Number two,

for internal storage whatever you save in the internal storage of an app is accessible only to

the app. On the contrary, whatever you store in the external storage can be read by anywhere.

So be aware of this when you are developing your application. The third major difference is

that when a user uninstalls an app then the system removes all your app files from the internal

storage. However, when the user uninstalls your app and your app has stored something on

the external storage only those files will be removed which have been created with using a

specific API rest of the files will be left on the external storage. Now we will come and

discuss it in more detail later on but take a pause and think about the benefits as well as the

disadvantages of this approach that is some of the files will be removed while the others will

not be removed, ok.

(Refer Slide Time: 17:01)

So depending on these major characteristics or properties we can say that internal storage is

best when you want to be sure that neither the user nor other apps can access your files, so

only your app can access the files. At the same time, external storage is the best place for files

which do not require access restrictions for example, if you have developed an app which

takes photos using the camera. Now you may want your user to see these pictures and may be

also to share them with other users. So for this external storage is the best, by default your

app are installed on the internal storage only.

But you can use install Location attribute in the manifest to make sure your app is installed

on the external storage. So particularly if your APK is very large you may want to make the

switch because if you consume on a large part of internal storage of a user they are not going

to use it. Now considering these advantages can you make a guess that why some devices

designate their internal storage as internal and external, what do you think could be the

advantage of it? So as you may guess one advantage is that now the app can decide which

files are used even after the app is uninstalled and which files to be removed when the app is

uninstalled. For example, if your app is about taking pictures you may not want to remove the

photos that have already been taken and the easiest way to do it is to store them in the

external storage.

(Refer Slide Time: 19:24)

Now if you want to write to an external storage you must request a specific permission in

your manifest file which is of type WRITE_EXTERNAL_STORAGE. Similarly for reading

even though it is not currently necessary but you may want need permission in future for

doing even the reading of the external storage? This permission is

READ_EXTERNAL_STORAGE. My advice to you is that no matter what app you may

develop please ask for these permissions, so that your application remains future proof.

This can be set very easily in your manifest file here I am giving you a very simple example

user permission android name android.permission.WRITE_EXTERNAL_STORAGE. If you

do that when user installs your application if it is on an older device holding android 5.0 or

older version then user will be ask for the permission at the install time, if it is a new device

then the user will be asked for the permission in the run time.

(Refer Slide Time: 20:31)

Now let us see that how do we save a file on the internal storage. The first step that we need

to do is to find out the directory that corresponds to our application. We can get this directory

by making a method call name as getFilesDirectory(). Similarly, there is another method call

available for us which says that getCacheDirectory() and returns a file representing an

internal directory for our apps temporary cache files. Please do not confuse this cache with

the operating system cache, these two are different. The cache of an application is the

temporary cache file consists of files which the app uses. Now be sure to delete each file once

it is no longer needed and implement a reasonable size limit for the amount of memory you

use at any given time because if the system begins running low on storage, it may delete your

cache files without warning, do not relay on the cache files.

(Refer Slide Time: 21:49)

Here is a very simple example, good part of android programming is that it is very similar to

java programming as we have already seen. So just like in java once you get a file object you

can write to the file in multiple ways. Similarly in android once you get a file object you can

write the file in multiple ways. For example, here I am getting a file object, once I get the file

object from the required directory and by giving filename I can write to the file in multiple

ways.

(Refer Slide Time: 22:23)

So here is a very simple example where I am using output stream to write to my file. Now

that was all about internal storage now let us discuss the external storage.

(Refer Slide Time: 22:39)

So as told earlier that there is no guarantee that the external storage will be available. And

because there is no guarantee that the external storage will be available, you must always

verify that volume is available before. Now you can query the external storage by calling a

simple method called getExternalStotageState() and if the returned state is equal to

MEDAI_MOUNTED, then you can read and write your files. But this verification step is

very important because you can never be sure that your external storage available specially

when your app is going to be run on different types of devices, some of them may have

external storage some of them may not, some of them which may have an external storage

may be connected to the PC with USB mounted as a scenario so at that time it will not be

available, so it is always just go to verify.

(Refer Slide Time: 23:49)

Here is a very simple code which will do it for you. So is ExternalStorageWritable() state

getExternalStorageState() if it is a MEDIA_MOUNTED then return true otherwise return

false.Use this method as explained earlier this will be the state. Here we are checking for the

same and then you can write on your external storage.

(Refer Slide Time: 24:20)

Now more details about the external storage, external storage has two types of files. One is

public files and the other is private files. So the public files as shown by the name are the files

that should be freely available to other apps and to the user. So when the user uninstalls your

app these files should remain available to the user. For example, photos captured by your app

or other downloaded files.

Then you may also want to use the external storage to store some private files. And these files

should belong to your app and should be deleted when the user uninstalls your app. Now

please note a crucial difference, when the files are on the internal storage no other user can

access it, but when they are on the external storage they can be accessed. So even though we

are saving private files they are not really private, they are only private in the sense that they

are not useful beyond your application.

So these files are technically accessible but ideally they should not be the type of files that are

of (()) (25:34). And when the user uninstalls your app the system should delete all these all

such files. So an example of such files is additional resources downloaded by your app or

temporary media files. For example, when you are making math quiz we had these small

icons now you may be you may want to have 10-20 different type of icons for your app, these

icons have no meaning outside your app. So you may want to use the external storage to save

this but then the all of them should be deleted if the user deletes your app.

(Refer Slide Time: 26:17)

Now let us look at a small code to see how to save a public file. Here I am trying to do that I

try to get a file object new File. Please look at this variable very carefully; I am saying

DIRECTORY_PICTURES so I am trying to get the directory for the user public pictures

directory. There are different types defined in android and what they help is in finding what

kind of files they are so that the android can use certain apps to display it. Suppose your app

uses a code something like this, then android can use its own knowledge to find out that ok

these files looks like picture files and therefore may be they can be displayed in the (())

(27:10). Similar things will be available for example for a dial tone or for music files, etc, so

try to use these standards when you are developing your code.

(Refer Slide Time: 27:32)

Querying for free space again besides knowing that your external storage available you must

have also query, whether it has the space or not. You can use either of the two methods, first

is a getFreeSpace() and other is a getTotalSpace(). As their name indicate first will see the

free space available and another we will see the total space available, often they are used

together. But be aware that the free space if it returns the size which you just exactly need for

your file it may not actually be sufficient. So if you want to store something of 10 MB and

the getFreeSpace() becomes 10 MB your android system still refuse it. So a rule of the thumb

is that around 90 percent of whatever is return can be used by it, so if it returns 10 MB around

9 MB you can use.

(Refer Slide Time: 28:27)

Then the next is deleting a file again it is very easy you just call a method call delete or delete

file and pass the file name then it deletes the file. Similarly as told earlier, if the user

uninstalls your app then android system will delete. Number one all files you saved on

internal storage and all files you saved on external storage using ExternalFilesDirectory().

This was all about files which are one of the major ways of creating and storing data from

your application, next we will learn about the database called SQL.

