
Mobile Computing

Professor Pushpendra Singh

Indraprastha Institute of Information Technology Delhi

Lecture 25

Fragments

Hello, welcome to your next class on fragments. In last two lectures we learned some basics

about fragments, in next two lectures we will learn how to create a program for a mobile app

using fragments. We will try to implement all the concepts that we have learned, so please

look at my screen carefully and try to write your own program as I do this. So number one is

that let us first start a program. So I go to the file, I go to new, I go to new project, I give the

application name, let us say fragment basics because we are only going to do some basics

operations here, I go to next, I choose phone and tablet, then I go next. I create an empty

activity. For activity name, I do not really change it and I can just say finish. Now android

studio is creating my project.

(Refer Slide Time: 1:43) 2:51

Many of you have mentioned that you are getting problems, which says that such a library

does not exist. If all these cases are there, first please try to look at your import statements

that what you are importing and second try to look that whether whatever you are importing

is actually available or not. For example, you may be importing a library for which you have

not added a dependency, so you need to do both in order to make your program run. Now, for

example we now have our basic application created, we will make few changes in to it to

make it an application for using fragments, currently this is just a basic application which

uses empty activity. So the first thing that I am going to change is that, I will change the

extends to fragment activity instead of Appcompact activity, so I type fragment activity.

(Refer Slide Time: 3:57)

Now, at this point of time, the android studio gives you a choice to either import the android

dot support dot v4 support library or the Android dot App, I will choose the first one because

this is the version of support library. Let me choose it and now you see that my import

statement has changed and it is saying android.support.v4.app.fragment. Now let me go and

add the library to it. If I see the Android studio is still showing red, because it cannot find this

library. So now let me go into the file, new, file and then come to project structure, in the

project structure I have a small thing called App, so you can see App here.

(Refer Slide Time: 4:34)

So, I go into this, when I click app, I see these tabs, I will go to the last tab called

dependencies and in here you can see that appcombat v7 is already there, something which I

am already using in the import, but there is nothing like v4 here. So I will press a + and I will

choose library dependency. This will open another dialog box and the second entry says

support dash v4, com dot android dot support colon support v4 colon 24 dot 2 dot 0, this is

the support library that we want to use in our program. I have earlier asked you to use support

library called development fragment rather than the android os, there are multiple reasons for

this, number1 that the android library support android devices which are as old as running

android1.6.

Number2, the support libraries are updated more often. Number3, that because you are using

a support library, if a new library comes, if a new version of library comes with an advanced

feature, all you need to do is add the newer library in SDK and everything is fine. So there

are ample reasons to use the support libraries for development and that is what you should do.

So let me select it, press ok, this now appears in my dependencies and I will now press ok

and that is it.

(Refer Slide Time: 5:48)

Now you can see that Android has again started building my project and after some time this

error will go away as soon as my project is built, so let us wait for it. Yes, so now it has gone.

Now, the next step is to look into the layout file and see what kind of layout we currently

have. As you see that we have the default layout which Android always gives us. Let me

change it to the text, so I would like to change it I would like to make it a very simple layout.

I will call it fragment frame layout because in this layout I can put my fragments.

(Refer Slide Time: 6:37)

As we have already discussed that fragments views our inserted into a placeholder and that

placeholder is usually provided by the activity, so I will remove this ok I will remove this, I

will then add another field Android Id, we have used it at multiple times. So add +Id and I

will give it the Id name as fragment container, please remember this name, layout width,

layout height I will add. Not going to use any margins, I am not going to use any textview. I

am missing one and this completes the layout file for my activity that will be using a

fragment. As you can see I am not giving much, I am just giving an Id so that I can refer to

this layout in my program. The design is also very simple, it does not do.

(Refer Slide Time: 8:56)

So now we are ready and the next step that we are going to do is to first add a fragment to our

program, once we have added a fragment to our program, then we will try to see that how we

will bring in that fragment into the activity. So in order to add a fragment into our program, I

will go to the Java, I will go to the main package definition, I right click, I go to new, now

you will see that I can add a fragment by just clicking on a Java class that is basic Java file

and then writing my own code or I can go down to the fragment and I can choose a one of the

three fragment options.

(Refer Slide Time: 9:46) 13:07

For the time being we will use a simpler version, because our fragment is very basic. So let

me click on Java class, I will give this a name as basic fragment, again I am using fragment

as a suffix so that anyone else who looks at my program knows that this class is actually a

fragment. I press ok and I see that a basic class has been added. But this is currently a simple

java class I want to change it to a fragment, so I will go to first line and I will say it extends

fragment, again I have a choice of two, of two inputs of fragments which is coming from

support dot v4 and fragment which is coming from android OS, I will choose the v4 version.

This will add an import statement and this is all fine.

Now, let me do two things, number 1 if you remember correctly, that we need to first, we

need to definitely override a method called onCreateView, so let us override that method.

@public void onCreate oh sorry I need to complete this @override public void

onCreateView. Now this method takes three parameters, one is a layout inflater, let us call it

later. Second is a view group container, let us call it a container and third is a bundle and let

us call the bundle saved, instant saved. I am using the default standard names, this is usually a

good practice because then you know the variable, what kind of type this variable holds. So

bundle again it cannot resolves, I will have to press Alt Enter which will add another import

now everything is fine. When we implement the onCreateView, we will have to first create a

view and return.

Now, if we try to create a view we will have to call the method which is known as inflate, the

inflate method if you see here, let me go back a little. If you see here then the inflate method

takes 3 parameters, the first of that is a resource Id, now which resource Id you should

provide, well, because we are trying to inflate our fragment, we need to provide the resource

Id of our fragment there. But so far we have not created any fragment layout, because we

choose to create our fragment file by just extending a normal java class. So let me create

another layout which corresponds to my fragment and whose Id I can give here.

(Refer Slide Time: 13:36) 14:17

So, I will go to layout, I click new, I click a layout resource file and I give the file name as

fragment underscore layout or fragment underscore basic to correspond to our name. I choose

this, oh I am sorry. Let me first create the layout file, I go to new and I click and XML and

under XML I choose layout XML file, in this it ask me layout file name, I call it fragment,

fragment underscore basic and my root tag is linear layout which is fine with me, I click it

and creates a XML file corresponding to my fragment. Let me show what is happening. So,

yes I have created this new file called fragment basic and we will now see what is in the

fragment basic.

(Refer Slide Time: 14:37) 15:46

So in fragment basic there is nothing but just an empty linear layout. I am fine with it, I will

just add a small text so that we recognize when our fragment has been imported into the

activity. So all I will do is, I will just do an add a text and width is fine with match parent,

height is fine with let us say wrap content, I will have to add an Id, Android, well actually I

need not to add an Id here, because I will not be using it, but let me just say, I want to display

a hint which is “enter a sentence” or “enter a word”. So this is a very basic linear layout, let

me see its design.

(Refer Slide Time: 16:23) 17:31

It is just linear and a text with a hint of enter a word and let us see also the layout of our

application, our activity does not have anything, so when our activity imports fragment, we

should see this, ok now let us go back to our basic fragment and now we have something to

give when the inflate field asks us, I will give R dot layout dot now you can see I am getting

an option of fragment basic. So let me add it, the fragment basic here. The second field is

easy, I can just give container here and the third usually is false. When we go further

sometimes we will change this variable. A good idea could also be if you want to try why,

what happens if you try to convert it to true in some of your examples and see. For view, so

now I have added another import statement so now my view is recognized. And then I am

doing nothing but just returning my view.

Oh, sorry, I have made a wrong definition, it is not void but it is view. So view onCreateView

so now, my basic method is complete. I would like to discuss a very small but important

thing.

(Refer Slide Time: 17:38)

Let us go to activity, in activity we have a onCreate method which we override and this

onCreate method is protected.

(Refer Slide Time: 17:57)

Now let us go to fragment, in fragment we have an equivalent method called onCreateView

and we override that as well but that method is public. Can you understand the reason why?

Think about it. As some of you may have guessed, it needs to be public because this will be

called from an (())(18:16) so this will be called from outside so this needs to be public. Now

we have created a basic activity, we have created a basic fragment; so far we have not

imported that fragment into the activity, but let us run our program to see what our program

looks now and what it will look once we import the fragment. So, I will use a Nexus xp

emulator API23, I keep using it till the nogat android nogat API24 and x7 have been released

to the public. So, let me do the run, our emulator is starting, it is taking time now what do you

expect to see.

(Refer Slide Time: 19:25) 19:53

Well current example, we have not done much, only thing that we expect to see is the basic

layout of the activity. However it is important to see that, so that when our activity actually

brings a fragment then we can identify the reference, so let us wait, so yes, our activity has

started and there is nothing here, as expected.

(Refer Slide Time: 20:08) 21:36

Now, let us write rest of the code to bring in the fragment into the activity. Earlier I had

discussed that there are two ways to do this, one is to make changes in the XMl file of the

activity, number 2 is to write a code which brings the fragment and we also discussed that

what is the positive open approach and what is another and normally if you want to work

with the fragments dynamically it is always good to use code and that gives you the

flexibility. Now, let us start writing the code that will bring in the fragment to the activity.

First I need fragment manager let me call it fm or let me call it fragment manager. I get the

fragment manager by making call to a method called get support fragment manager.

Second I need to create the fragment object, Create the fragment object and the first thing I

try to do is, to find that if there is such fragment already in the system. Let me just call

fragmentmanager.findFragmentbyId and we will pass it the Id of the container that it has.

(Refer Slide Time: 21:45)

So if you remember I had asked you to remember this Id, this refers to a layout of the

activity. We will pass it because we want to know if there is any fragment with this Id. So R

dot layout dot R dot sorry Id dot fragmentcontainer.

(Refer Slide Time: 22:26) 24:44

And once we do this, we need to make a check if it is returning null or if it is returning a non

null value. Because your activity goes into different life cycle stages, so when you start your

program it will obviously be null the very first time. However, once you will start interacting

on your Android device and your activity goes into different life cycle stages such as start,

stop, destroy, etc, there is chance that in one of these activities, one of these states, your

activity is hidden but it is still alive, in those cases this value will not be null, so that is why

we make this check. So if it is null, we create a new fragment and the let us call it new basic

fragment.

And now I want to start a transaction which will add this fragment to the activity. Fragment

manager, we will begin transaction and I want to add a fragment, now I first need to give the

Id where I want to add the fragment and then the fragment that I want to add. So the first

parameter means where I want to add and second is what I want to add and after that I do

commit and that is it. Hopefully everything is fine. Let me run the program. Ah ok, so I made

a mistake, I done extra curly bracket, so now everything is fine. Let me compile and run our

program.

(Refer Slide Time: 25:02)

So our program runs and here you see, now our views changed, our activity has actually

brought in a fragment. So this is not just the activity layout, this is the fragment layout that

you see. So this is the basic fragment application which is showing you how to bring a

fragment in an activity using the code. Now let us add some log messages to understand the

different state transitions between activity and fragment and between the different states of

the activity (())(25:34). Just like last time we are going to add log statements and see how

they are played. Let us first stop, we go to our main activity and we try to extend all the other

methods, we try to override them.

(Refer Slide Time: 26:07) 27:46

First I will also have to declare a private static final string tag = main activity and then we

have added the same methods, I have copied them from my profile. Now we go to the

fragment, we first add the tag which is again the same, private static final string tag = basic

fragment. We now override all the other methods; so, many of the methods are common with

the activity, but then there are methods which are different. For example, there is

onCreateView and there is also an onCreate so, let me create a onCreate method. So unlike

the, just like the activity onCreate takes a bundle saved instance state.

(Refer Slide Time: 28:55)

Not going to do anything, except call in the onCreate, inside onCreate. So we have onCreate,

we have onCreateView, we have, now there are some other methods as well such as on

Attach and onActivityCreated in the fragment, let us also do them. So, our first method, on,

so onActivityCreated, this also takes a bundle, let us just call it b then just call super dot

onActivityCreated bundle inside onActivityCreated. Another newer method for this method

which exists in fragment was not in activity is onAttach, takes a context, let us call it c, it also

asks me to import another file. It should call, just like other methods, superonAttach onText

and I will change the log and entry to Inside onAttach.

(Refer Slide Time: 31:00) 31:44

Now let us see if we are missing something, so actually we are, there are 2 more methods,

onDestroyView and onDetatch. So, yes, we have onDestroyView, we have onDestroy and we

have another method called onDestroyView, so let us implement that onDestryView view,

ok, what it is showing. Ah, I typed it twice and then the only method left is onDetatch, so let

me also change that to onDetach as well onDetach ok, onDetach and inside detach. Fine, so

now we have (overrid) overridden all the methods of the lifecycle of the fragment. We have

also overridden all the methods of the lifecycle of activity and we have added log messages to

them.

This is not necessary in a normal program to override all the methods, but we want to see the

interplay between the fragment and the activity; we also want to see how and when different

lifecycle methods of activity and fragments are called. So let us clear our log and run the

program now. We will now concentrate on our log window because we have already seen

what our program displays. We will just concentrate on our log window to see that how

different methods and when these different methods are called. Let me start the execution and

let us start watching the log window. So I will set set a filter of Inside, and I am hoping that,

ahh, ok, so there was some log but we did not see it, I want to see why it happened. Oh, so I

think we, by mistake we removed all our log, let us stop, start the execution again and see.

(Refer Slide Time: 33:52)

So, now we start, yes, now we can see. let us try to put a filter of inside, so now you see that

the very first, our fragments onAttach, onCreate, onActivitycreated and onStart gets called

before the onStart and onResume of main activity is called, but after the onResume of activity

is called our fragment onResume has been called. This is as we learnt last time in our lecture

let me open those slides for you as well so that you can once again look at it.

(Refer Slide Time: 35:27)

So, as you see, this is what is happening, we knew that, let me setup correctly so yes you see

for the fragment on Attach, onCreate, onActivityCreated have been called with the created

aspect, then the activity started, activity started on Start is called of the fragment, Activity

resume, onResume is called. Now, let us try to interact with our application. What happens

say when we press home? When we pressed home, you can see that out activity, our fragment

went into onPause and our activity went into onPause, our fragment went into onStop our

activity called. This is again as we discussed here, when the activity is paused onPause, when

the activity is stopped onStop.

(Refer Slide Time: 36:47)

Now, let us bring back and again you see start onResume , then let us kill it, now you see that

onPause, onStop as you know that onPause and onStop they are called before the onDestroy

and the activity before the activity call goes into onDestroy, fragment has to destroy its view

going to onDestroy and Detach and then the onDestroy of the activity is called, so something

like this onDestroy, onDestroyView so,onDestroyView, onDestroyView, onDestroy, exactly

as we learned last time.

So, now you have created a very basic fragment and you have called it from an activity, in the

next lecture we will make it slightly more interesting where we will create 2 fragments inside

a same activity and then we will also call activity from fragment and we will also call a

fragment from a activity. That is we will use a callback method to take the transfer from the

fragment to the activity and similarly from the activity we will get a reference to the fragment

and come back into the activity. Thank you and keep going.

