
Mobile Computing

Professor Pushpendra Singh

Indraprastha Institute of Information Technology Delhi

Lecture 24

Fragments

Hello, let us continue our discussion on fragments. In last lecture we discussed what

fragments are, normally you should assume fragment as a sub-activity which an activity can

call so that is an activity can call multiple fragments put the layout of the fragments in the

activities book load. So you can see multiple fragments inside a single activity and you can

create dynamic and multi-plane UI that you may need if you want to develop your

applications for devices such as tablets which have a large screen size as well as performance

which have smaller size. So today we will learn a little bit more about fragments.

(Refer Slide Time: 1:07)

So when you are doing fragment development you can extend fragments from 3 important

subclasses. These subclasses are DialogFragment, ListFragment and PreferenceFragment.

Later on we will learn a lot more about dialogue and what are the other ways to handle

dialogs, but DialogueFragment gives us a fragment which can act as a dialogue we will see

later in the program how to do that. Similarly ListFragment shows us a list of items and the

PreferenceFragment shows us the list of items in a (()) (01:47) or the most general way is to

just implement directly from the fragment class and then implement the functionality where

you want to. Now how do we create a fragment? Well, for creating a fragment we extend the

fragment class and we override the key lifecycle methods.

(Refer Slide Time: 2:23)

One method which we definitely use is the onCreateView() method. When you create a

fragment, a fragment contributes its own layout to the activity. So you implement the

onCreateView() callback method you return a view the view that contains the layout of the

fragment and that layout is then inserted into the place holder inside the activity. In order to

do that the fragment provides you a layout inflater object and this inflate method takes 3

arguments.

(Refer Slide Time: 3:03)

Lets first have a look at the method and then come back, so here is an example of the Layout

Inflater so yes you can see that I am having a class which is extending a fragment inside that

the only method I am overriding is the onCreateView LayoutInflater, this method is taking

three parameters one is the LayoutInflater another is the ViewGroup and third is a Bundle.

The Bundle is same as the Bundle that we have earlier in our activity.

The ViewGroup is also same as we know already, the interesting new element is this layout

and the LayoutInflater actually calls a method called inflate which again takes 3 parameters

and theses parameters are what we are investigating. So let us go back, first argument is the

resource idea of the layout, so this is the resource ideas you see R.layout.example fragment.

This is the resource layout of the example fragment so this is the idea of this.

(Refer Slide Time: 4:41)

The second argument is the ViewGroup which will be the parent of this inflate layout, so this

will be set fit into this container, this container will information will most likely come from

the activity class that is the parent class of this fragment, by parent class I mean the activity

class that is using this fragment and the third is an argument which is a Boolean which

indicates whether the inflated layout should be attached to the Viewgroup or not, so we do

not so we will sent this value to false correct. You may want to experiment by setting a true

value and seen how does your application look.

(Refer Slide Time: 5:01)

now we know how to initialize a fragment how to create a fragment that is extending the right

class and then implementing the onCreateView method. Now let us see that how do we add a

fragment to an activity, so there are 2 ways to add a fragment to an activity and as you may

also guess that the one way is to add it in the external file (()) (05:23) and the another way

is to add it through the (()) (05:26). If you remember in the very beginning they talked about

that for each activity we have a layout external file but we had also said that at that time that

you know we can create all this using the code with fragment it is the same thing, you can

either add a fragment inside the activities layout file or we can programmatically add the

fragment to an existing ViewGroup using the code.

What do you think is the better approach and in what condition? Think about it. So as you

may imagine if your fragment is not going to be too dynamic then maybe you will consider

the first approach where you directly attach it into the layout. However if your program is

such that you move fragments you change fragments you change between different fragments

then the second approach is the most suitable. We will learn both of the approaches in next

few lectures.

(Refer Slide Time: 6:28)

Now let us look at the first approach for the time. How do we do it, number 1 specify layout

properties for the fragment as if it was just another view. So now we already know how to

add a view for example, we added buttons in our previous example which were a view. So

the same thing that we have to specify layout properties for fragment as if it were a view.

Now let us see an example, so this is the example that is given here let me try to increase it so

that you can read more clearly. You see that we start with a linear layout this is the layout of

the activity and this activity contains two fragments, which is starts with the name fragment.

So the value of the fragment is only from this fragment till this angle. Now just like another

view it has the elements like weight, width, height, etc but it also has something else.

We have seen id, weight width, and height earlier, but it also has something called android

name and that name was actually giving what looks like a path to a class and actually this is

what it is. From the name the android system will find out the fragment that you are talking

about. It will inflate the layout of that fragment and with these properties it will place that

layout inside this ViewGrop. So let me come back again, a fragment has android name which

will refer to the class file of the fragment that you are referring to. From that end with these

properties the android system will decide how to put the fragment as a view into the

ViewGroup of the activity.

So in this class if you see this is a linear layout and in this class there are two fragments and

they are these two fragments so most likely this is an interface for I would say a tablet,

where the screen is divided into two parts something which we discussed earlier. Now one

of the fragment may be displaying a list looks like by the name, while the another fragment

may be displaying details of a particular item list. Now let us go back so here is what we have

discussed the android name attribute, the android name attributes specify the fragment class

to instantiate in the layout. So in our previous example if we go few slides back we were

giving the example of this ExampleFragment and then we were saying that the

ExampleFragment will have inflated a layout here.

Now if I have used ExampleFragment here, then android system will seek ok it is

ExampleFragment will go inflate the layout and put into the ViewGroup of the activity that is

how it works. Now, each fragment that you add requires a unique identifier that a system can

use. As you will see that because we are using our fragments dynamically in the program we

need an identifier to refer to it and the same identifier we use to capture the fragment to

perform transactions, for example “remove it”.

Now there are 3 ways to provide an identifier, the first method is to supply an attribute for

android:ID as you can see in this example we are using this, this is android:ID again I will

enlarge. Android:D and then the second way is supply the android tag attribute with a unique

string. We are not doing that because we are using ID, you can use either of it and then the

third is that if we do not do ID or tag then android system can always use the ID of the

container, but I will advise you either ID or tag to identify your fragment in your program.

(Refer Slide Time: 11:49)

Now that completes our discussion on how to add up fragment in the xml file of the activity

layout file, now let us move on to this second way of adding a fragment that is

programmatically adding a fragment in our activity. So if you want to add programmatically

over fragment then it anytime while our activity is running, so earlier if you remember we

had just discussed that activity after the on resume method is considered in the state of

running, so in that state we can add fragments to our activity. What we need to do is we will

simply have to specify the ViewGroup in which to place the fragment. So the requirements of

specifying the ViewGroup is same, in the xml method we were directly adding it into the

ViewGroup, here we need to specify the group.

Now let us look at the code that is given, we obtain a fragment manager we obtain a fragment

transaction, then this is our fragment example fragment. We create the object of it then using

our fragment transaction we add our fragment to the view group were we want to add, so this

is the ViewGroup R.ID.fragment_container. If we go back then we will find this container in

this so this is the value that will be supplied, so here it is coming doubt here so this is the

container of the activity. So this is the ViewGroup in which we are adding our own fragment

and once we have done it we do a commit. So all this is a called a complete fragment

transaction and for doing this transaction we use the API from the fragment transaction.

So think of the transaction of fragments similar to the transactions that you have learned in

data, where you do a series of operations which you call as a transaction and after each

transaction you do work up, same thing here we do a series of operation and then we commit.

(Refer Slide Time: 14:24)

Now let us come next on discussing how to manage our fragments. So we can manage our

fragments using the fragment manager this is the same fragment manager that we are talking

about. In the fragment manager first you will have to obtain a reference to our fragment and

that reference we can find by either using findFragmentById or findFragment by Tag. So this

will return us the fragment that exists in our activity. Now earlier we had discussed about

back stack which was something maintained by the activity to manage your fragment

transactions. So the pop back stack method will pop the latest transactions from the stack and

we can also add a listener to it this is called addOnBackStackChanged Listner, so if there is a

changed in the back stack then this listener method will be called. Now let us move forward

and learn about how we perform fragment transactions.

(Refer Slide Time: 15:18)

So each transactions as you know from your data base audits is a set of changes that you want

to perform at the same time, you can set up all the changes you want to perform for a given

transaction using methods such as add, remove and replace and then to apply the transactions

to the activity you must call commit. However, if you want to call if you want to add the

transaction to the back stack, then you may also want to call a method called add to back

stack before you call. This back stack as told to you earlier is managed by the activity and

allows the user to return to the previous fragment state by pressing the back.

(Refer Slide Time: 16:14)

Few more details, when you call commit the action does not perform immediately, what

commit does is that it is scheduled to run on activities UI thread which is the main thread

and then it leaves it to that side and as soon as that side is able to do the commit it does the

commit. That is that all the transactions which we mentioned in the commit will be executed,

but it depends on the activities UI. However if we want to do an immediate execution then we

call execute pending transaction from UI tag which then immediately executes transactions

submitted by it. Another important detail is that a transaction can be committed using

comment only prior to the activity saving its state that is when the user leaves the activity.

If you remember when we were discussing activity and fragment and we were discussing

their methods like onPause, onStop, onDestroy, at times we were talking about committing

the transactions committing the transactions, so this is the point so we can only commit only

prior to activity saving its state if a commit after that point an exception is thrown. Now let

us look at some code that performs the fragment transaction.

(Refer Slide Time: 17:49)

So here is an example code, first you create your new fragment then you create a new

transaction, which will get a FragmentManager and start the transaction. The transaction that

you are doing is actually replacing the existing fragment at this fragment container with our

new fragment. We are doing this replacement using the call replace. Earlier you had seen the

call to add there is also similar call to remove. We want this transaction to be available on the

back stack so we are doing the transaction.addToBackStack before we do the commit. So far

we have talked about fragments which have a UI but a fragment could also be there without a

UI.

(Refer Slide Time: 18:36)

Now you may want to wonder that what is the use of a fragment without a UI. Well, one

simple example is you want to do something in the background, there you can have a

fragment which does not have a UI. Now let us see that how do we add a fragment without a

UI. It is again very easy we can use the same add, so here we are giving a string a not a view

ID. It will add the fragment but will not call onCreateView because it need not create a UI

and then findFragmentByTag() return. So here we have learned that how to do basic

functionality within the fragments, how to perform transactions, how to add fragments etc.

Now let us come to another very important topic that how do the fragment communicates

with a activity.

(Refer Slide Time: 19:36)

So let us see, first a small recall as you as I told earlier that fragment can be used inside

multiple activities and in fact your advice to develop a fragment so that it is an independent

module which can be used inside multiple activities, but a given instance of a fragment is

directly tied to the activity that contains. So while there could be multiple activities in your

application, the activities that contains the fragment at a given point of time your fragment is

directly tied to the activity. So how does the fragment gets the reference of the activity, well

there is a call called getActivity. When a fragmengt makes a call to getActivity it gets a

reference of the activities in which it is currently run. So by during this then it can do other

perfomance for example, a fragment in this example in this example your fragment wants to

get a view in the activity layout.

So it makes a call to getActivity using that reference which was findViewById. Just like

fragment can access activity, activity can also access fragments, so the activity can call

methods in the fragment by acquiring a reference to the frag, how does activity gets a

reference, by calling this method called getFragmentManager and findFragmentById. So now

my activity has got a reference (()) (21:18) So you see that both activity can get a reference to

the fragment and fragment can get a reference to the activity.

(Refer Slide Time: 21:32)

Now let us discuss about how to have callbacks which also allow the interaction between the

fragment and (()) (21:37) so we use call back to share some events with activity. How do we

do it, define a callback interface inside the fragment and ask the activity to implement that.

Now when the activity receives the callback to the interface it can share the information with

other fragments in the layout as necessary.

(Refer Slide Time: 22:19)

So let us quickly look into a very brief example again let me increase the font here you see

that there is a fragment and this is the interface. Now let us go to second screen here we are

doing little bit more than that.

(Refer Slide Time: 22:41)

So earlier we had this, onArticleSelectedListner now you can see that it is coming here.

Going to mListner and then in the 3
rd

 screen you can see that from the mListner we are (())

(22:46). So later on we will learn a program and there we will see that how to implement a

callback but this gives me a basic idea which was to define a callback interface and require

the host activity to implement it. In later videos we will write a program which is equally (())

(23:07). Now let us discuss a little bit more about the fragment lifecycle, we discussed it

briefly in the previous lecture and this lecture we are going to discuss it in more detail.

Number one, let us see how does the fragment lifecycle and activity lifecycle work together.

(Refer Slide Time: 23:40)

So let me also make a bigger image so that you can see clearly on the left side I am

mentioning activity states and on the right side I am mentioning fragment callbacks. When

the activity state is created that is the very first activities created. The fragment callback four

fragment callback happen at the same time, onAttach, onCreate, onCreateView and

onActivtyCreate.

When the activity state moves to started onStart callback, when the activity state moves to

resumed onResume callback and as you know from your knowledge of activity that the

activity stays in a longer duration only in the resume state and not in the created and start

state. So this is the main or the major state in which an activity is and fragment callback is the

onResume, then in paused and stopped also cycle an activity stays for a longer time even that

also results into the corresponding pause sometime, but when an activity is destroyed this

again requires a multiple number of callbacks to be called in the fragments onDestroyView,

onDestroy and onDetach.

What my advice to you is to override all these methods in your fragment example and put

appropriate log nest is there similar to what we did when we wanted to understand the

activity example. Now once you have placed the log messages then you run your program

and you do various things. You go you press the back button you press the home button you

start another application and try to see that what is happening to your fragments when your

activities is changing its lifecycle. Let us come back to the normal point move to the next

slide.

(Refer Slide Time: 25:52)

So let us go again into the resume pause and stop because these are the three major states in

which activity also lasts for longer time and fragment. So in the resume state the fragment is

resumed, in the paused state there is another activity in the foreground and has focus, but the

activity in which this fragment lives is still visible something like a dialogue box right and

then in the stopped state the fragment is not visible either the host activity has been stopped

or the fragment has been removed from the activity.

(Refer Slide Time: 27:06)

Just like the activity has stopped fragment is still alive and it is just no longer visible, So as

you see that there are lots of similarities between fragments and activities and if you

understand the activity you should have little problem in understanding the fragment. Now

let us discuss the lifecycle a bit more. Just like what we did in our activity we can also do in

fragment that is you can save the state during the fragments onSaveInstanceState callback

and restore it during the onCreate or onCreateview or onActivityCreated. This functionality is

also very simple as we did in the activity using the using the Bundle. So effectively a

fragment lifecycle is very very similar to the activity lifecycle.

(Refer Slide Time: 27:34)

Now let us see that how these two lifecycle co-ordinate. So the lifecycle of activity in which

the fragment lives directly affects the life cycle of the fragment, so activity lifecycle is

controlled by let us say android system and fragment lifecycle is pretty much controlled by

the activity. Each lifecycle callback for the activity results in a similar callback for each

activity. So if in a lifecycle onResumed is called then in the (()) (20:00). The fragment has

some few extra life cycle callbacks that will handle the unique interactions with the activity

in order to perform some actions for example, building and destroying fragments UI.

(Refer Slide Time: 28:25)

So again some details what happens when the methods other than what is exactly common

with the activity happen. When onAttach is called, when the fragment has been associated

with the activity onCreateView is called to create the view hierarchy associated with the

fragment that we have already seen and onAtivityCreated is called then the activities

onCreate method has returned. Similarly, onDestroyView is called when the view hierarchy

associated with the fragments is been removed and onDetach is called when the fragment is

being disassociated from the activity. The best way to learn about all these skills to write a

program override the methods add the log messages and then play with the program to see

what is happening, so one more time I will display the same image that I displayed earlier.

(Refer Slide Time: 29:34)

You can see, onAttached, onCreateView, OnactivityCreated just we discussed rest of the

matters are same and onDestroyView and onDetach that we just discussed. So with this we

complete our discussion on fragments and in next lecture we will work through a

programming example to see some of these concepts in it.

Thank you

