
Mobile Computing

Professor Pushpedra Singh

Indraprasth Institute of Information Technology Delhi

Activity Logging

Lecture 16

Hello, last two classes we learned about activity life cycles and the call back

methods that I called by the android system. When activity goes through different

phases of its life cycle. In today’s lecture we will see how to do logging. Logging

has many uses. Number one that you can use it for debugging that is primary use

of logging. Number two that you can use the logging to learn more about your

program execution.

Today I will show you what is the logging facilities available in android and

specifically I will show you how to use the logging techniques to know more

about our activity life cycle that we studied in last two lectures. You may have

already done some logging in your career.

For example, if you are a C programmer often we just type a print f statement and

see whether our program reaches the point or not. This is a well need approach

however this is not a recommended approach. Now the new programming

languages such as JAVA provide some very good logging mechanisms.

Because when you use a print f statement, at the time of the delivery you will

have to remove those statements. Similarly you do not know how to view those

statements in a nice or cleaner way. While with logging mechanisms you can set

the different log levels, you can remove the logs when you deploy, you can

reinstate the logs when you are testing (())(2:17) and this functionality is very

very important when you are debugging your application.

So today we will start looking at what logging we can do in android applications

and as the course progresses we will advance our debugging techniques using

logging and several other techniques. So let’s start.

(Refer Slide Time: 2:39)

I will be using our simplified application. Now in order to do logging, we need to

first see what android provides us. In order to start our logging you will have to

first see what facilities are available in android. So in android we have something

called android.util.logclass.

That sends log messages to a shared system given log. This log class has several

methods for logging messages. However, we will use one simple method which

has a signature of oblique static int D string tag as parameter and string messages

parameter. The D here stands for debug and refers to the level of logs. There is

not more to learn about log levels. But we will slowly learn it later. As first start

program.

(Refer Slide Time: 3:50)

In order to first use the log facilities we need to define a tag constant. A tag

constant is nothing but just a string constant that will identify your class. For

example I will just add a tag constant here by writing private, static, final, string,

tag now I will give it a value just nothing but same as the name of my class quiz

activity that is it. I have defined the tag for my class so that all the (leg mess) so

that all the log messages from this class are tagged by this name.

(Refer Slide Time: 4:52)

Now, in this program we are currently only see the on create method. That’s the

only method that is being called. However as we just discussed there are many

other methods are also being called such as, on start, on restart, on pause etc. But

we are not seeing them here. Because we are not over written. So let us overwrite

some of these methods and then start adding log messages to see when those

methods are called.

(Refer Slide Time: 5:26)

So first let us add a log message into the on create itself. I will just tag it. The

very beginning. The syntax to add a log messages log.d or dbug the first string tag

and then any message that you want to display. I will say inside on create and

that’s it. The studio displays an error because I have not yet imported

android.util.lan android.util.log if I press alt and enter it will import it by itself.

(Refer Slide Time: 6:18)

Let’s go and check and you can see that android.util.log has been imported and

my error is gone. Now let us just first run this program and see the effects of this

message. In android studio you will see a window called log cat. This is the

window where all the log messages are. Okay now we are running the

application.

(Refer Slide Time: 6:56)

 Let’s see, And me give it some rotation.

(Refer Slide Time: 7:01)

Uhhh so this is my log cat window. There are lots of messages here. I want to

filter the messages which is start with let’s say our tag quiz activity. I will type

quiz activity and as you can see uhhh sorry I made a spelling mistake. As you can

see it has already been called twice.

(Refer Slide Time: 7:42)

Let’s try to rotate and see what happens. uhhh okay yes it got called again. So

now I know what is happening. When I am interacting with my application. Let’s

say press the home button then I go to active applications. Then I come back

again.

(Refer Slide Time: 8:12)

I think I can see another on Create call. So that’s how you can see the log

messages. In your logcat window by setting a filter. If you don’t set a filter then

everything comes up and here is a small button which clears your current

window.

(Refer Slide Time: 8:29)

Fine. So this is what we did in the on Create method. Now let’s move on and try

to overwrite all the other methods which are related to the lifecycle of an activity.

We will start with on Start at override protected void on Start. Uhhh. Let me call

the super method. Whenever you override, your first line should be the call to

super method. My error is gone now I can add my log.

(Refer Slide Time: 10:33)

Let’s start our application again. First start filter. As you can see on Start has been

called, application is up. Now first we will add all the methods then you will see

its behaviour as being practical.

(Refer Slide Time: 13:15)

At override. Protected void on Pause super on Pause log.d tag inside on pause.

At override protected void on resume super.on resume log.d tag inside on resume.

At override protected void onstop super onstop finally at override. Protected void

on destroy super on destroy tag side on destroy.

Fine now our application is ready with all the necessary log messages to trace the

movement of our activity life as it goes through different states. Let us run our

application and see the execution. First I will kill it.

(Refer Slide Time: 14:37)

Compile and run. Quick run. Application is up. Let me set the filter. As you can

see my application is created, started and then resumed.

(Refer Slide Time: 15:17)

Can interact with it. If I go to home button then it is paused and then stopped. If I

go back again and restart again then from stopped went to on start and it went to

on resume.

(Refer Slide Time: 15:46)

On resume went to on pause and on stop when I started on the application. Let me

bring it back. It again comes to on Start and on Resume. Let me now press the

back button and see what happens. Oops when I press the back button on destroy

is called.

(Refer Slide Time: 16:24)

And when I press my recent app button again the app is created started and

resumed. Let me press a rotate button so that it rotates.

(Refer Slide Time: 16:41)

Now you see when I rotating first get destroyed then created started and resumed

one more time.

(Refer Slide Time: 16:59)

Again destroyed, created, started, resumed. So in this lecture you could see that

how using logs we can very easily follow through our activity’s lifecycle.

(Refer Slide Time: 17:16)

Now, so far (using) we were using only the .d version. Now let’s try to use some

other methods.There various others available. Let’s say log e tag e called. I will

only show it within the resume. log.w tag, w called. log.i tag, i called log.v tag,

verbose called. The D stands for debug. The e stands for error. The w stands for

warning. The I stand for info. And the v stands for verbose. You should use a v

tag while you are developing.

You should use a D tag when you want a debug output that may be filtered out.

You should use I when you are using informational messages. You should use W

for warnings and E for error messages. So now let us again run our application

and try to see how does the log tag handles these messages.

(Refer Slide Time: 19:32)

So I am currently putting a filter. You will see a small window there, currently

says the verbose. The verbose mean that anything about verbose will be called.

The verbose is the lowest level. Let me set it to what I call debug. Now you see

that from previous (meth) previous log messages, the messages which had we

called is gone comes back.

(Refer Slide Time: 20:34)

What I am (show) what I am showing you is the use of filter and log tag. Filter

unwanted messages if I set it to I only I, W, E are there. Even D is gone. If I set it

to w only the messages above W label will remain. So that is W and E. If I set it

to E then only the messages above E will remain.

(Refer Slide Time: 21:06)

So this shows different order in which these messages are divided. Based on your

uses you can use this. So that by using this filter you can see the appropriate

messages. And when you are using android.util.log class to send log messages,

you are not only controlling the content of the message but also a level as you just

saw.

Now so far we have been using a method called which is taking two string

parameters. One is the tag and another is the message. Let us see what else is

available. Let us see what is it?

(Refer Slide Time: 22:10)

So this is another method it takes a tag takes a message and it also take a

throwable instance. It also takes thorowable instance. From your knowledge of

JAVA you know that JAVA uses exceptions. You can use this new signature of

the log message to throw a certain type of exception.

So as we move forward and when we will use exception we will try to use the

other signature of the log methods that is provided by android studio. In this

lecture we learned about logging. How logging can be used to debug. And also

our logging can be used to learn more about your program. Thank you!

