Mobile Computing
Professor Pushpedra Singh
Indraprasth Institute of Information Technology Delhi
Activity
Lecture 15

Hello in last lecture we studied different application lifecycle states. We discuss
what happens when application starts and we also discuss what happens when an
application paused. We will continue our lecture from that and now we will see
what happens when application moves through different analytics. So let’s start

with resuming an activity.

(Refer Slide Time: 0:42)

Resuming an Activity I

* onResume() is called when a user resumes an activity from the
Paused state

* onResume() is called every time your activity comes into the
foreground, including when it's created for the first time

* Implement onResume():
* toinitialize components that you release during onPause()
* to perform any other initializations that must occur each time the activity
enters the Resumed state

e~ usO0CEAEnN
So when we resume an activity, on resume is called when a user resumes an
activity from the paused state. On resume is called every time your activity comes
into the foreground, including when it is created for the first time. As you saw in

the diagram and let me go back to it again.

(Refer Slide Time: 1:11)

Activity Lifecycle ([
Resumed
(visile)
onResume() onPause)
onResume()
Started Paused
(visie) (partially visible)
onStart) onStop()
onStant)
. i " Stopped
onCreate() — el o (hidden))/ onDestroy()

Resuming an Activity I

* onResume() is called when a user resumes an activity from the
Paused state

* onResume() is called every time your activity comes into the
foreground, including when it's created for the first time

* Implement onResume():
* to initialize components that you release during onPause()

* to perform any other initializations that must occur each time the activity
enters the Resumed state

e~ us0dA 2]
So On resume is called from the paused as well as from the (())(1:16). When you
implement on resume you must initialize the components that you release during
on pause. So if you release the components when an application went to paused

you must reinitialize them as you can understand.

You can also use on resume to perform any other initializations that must occur
each time the activity enters the resumed state. Now let’s move on to the other

two states that is stopping and restarting an activity.

(Refer Slide Time: 1:45)

C3

Stopping and Restarting an Activity 1D

* Activity may stop in different scenarios

* The user opens the Recent Apps window and switches from your app to
another app. The activity in your app that's currently in the foreground is
stopped. If the user returns to your app from the Home screen launcher icon
or the Recent Apps window, the activity restarts.

* The user performs an action in your app that starts a new activity. The current
activity is stopped when the second activity is created. If the user then
presses the Back button, the first activity is restarted.

* The user receives a phone call while using your app on his or her phone.

* Methods, onStop() and onRestart(), allow to specifically handle how
an activity handles being stopped and restarted

As u may have seen with your use of android applications and android phones
that an application may stop in different scenarios. For example for time to time
you switch between one application and another that is you go through all your
recent apps window and you choose one application over the another application.

In this case, the activity in your app that is currently in the foreground is stopped.

And if you return to your app from the home screen launcher icon or the recent
apps window, the activity restarts. The many times we do that we press our active
application list and we start working on the same application where we are
working before. Similarly, if an application starts a new activity in your
application. Similarly, if a user performs an action in your app then it starts a new

activity.

The current activity is stopped when the second activity is created. If the user
then presses the back button, the first activity is restarted. The user receives a
phone call while using your app on his or her phone, in this case the phone
application starts your activity of your application stops and when you go back

your activity on your application starts again.

We use the methods on stop and on restart, to handle the situations that arise
because of this stopping of an application or restart of an application. Let us first

see the stopping an activity.

(Refer Slide Time: 3:36)

Stopping an Activity i

* Once onStop() is called, the activity should release almost all resources that
aren't needed while the user is not using it

* Once an activity is stopped, the system might destroy the instance if it
needs to recover system memory.

* In extreme cases, the system might simply kill the app process without
calling the activity's final onDestroy() callback,

* It's important to use onStop() to release resources that might leak memory

* When an activity is stopped, the Activity object is kept resident in memory
and is recalled when the activity resumes.
* No need to re-initialize components that were created during any of the callback
methods leading up to the Resumed state.
+ The system also keeps track of the current state for each View in the layout
+ E.g.ifthe user entered text into an EditText widget, that content is retained

So, once on stop is called, the activity should release almost all resources that are
not needed while the user is not using it. This is an essential that because on stop
IS just one step about on destroy that is the destroy method. So whenever on stop
is called, you may safely assume that you have made simply leaving an
application and your application may need to destroy which means that you must

release almost all resources that the user has been using.

And once an activity is stopped, the system actually might destroy the instance if
it needs to recover some system memory. That is may be your application or
activity does not want to destroy. He wanted to keep it open but your activity list
into the stopped state and suddenly because of some other application the system

requires more memory.

In this case the system will kill applications which are in stopped state, that may
be your application. How the system restores such applications we will study very
soon. In some cases system may simply Kill the application process without even
calling on destroy method. All this indicates to our first point that is whenever the
on stop is called, we should try to release all the resources that we have been

holding.

When an activity (is) is stopped, the activity object is kept resident in memory
and is recalled when the activity resumes. There is no need to reinitialize

elements that were created during any of the callback methods leading up to the

resumed state. Please pay attention here, | am saying components that were

created during any of the callback methods leading upto the resumed state.

I am not talking after that. The system also keeps track of the current state for
each view in the layout. The views were different views objects like buttons
adding text, radio button, etc. So if a user has entered a text into an edit text

widget, then that content is retained. You need not to worry about.

(Refer Slide Time: 6:15)

Start/Restart Your Activity ([
* onRestart() is called when activity comes back to the foreground from
the stopped state

+ Can be used to perform special restoration work that might be necessary only
if the activity was previously stopped, but not destroyed.

* onStart() method is called every time an activity becomes visible

= 00O L)

e~ us 0@l N

On restart is called when activity comes back to the foreground from the stopped

state. Let us see the diagram, here you see

(Refer Slide Time: 6:25)

Activity Lifecycle ([

Resumed
(visile) |

onResume() onPause()
onResume()

Started Paused
(visible) (partially visible)

onStarti) ? onStop()
onStant()

Created -onRestart()

On restart is being called when activity comes to the start state from the stop.

And as you will see how to that after on restart on start is called.

(Refer Slide Time: 6:40)

Stopping and Restarting an Activity 1D

* Activity may stop in different scenarios

* The user opens the Recent Apps window and switches from your app to
another app. The activity in your app that's currently in the foreground is
stopped. If the user returns to your app from the Home screen launcher icon
or the Recent Apps window, the activity restarts.

* The user performs an action in your app that starts a new activity. The current
activity is stopped when the second activity is created. If the user then
presses the Back button, the first activity is restarted.

* The user receives a phone call while using your app on his or her phone.

* Methods, onStop() and onRestart(), allow to specifically handle how
an activity handles being stopped and restarted

So on start can be used to perform some restoration while that might be necessary

only if the activity was previously stopped, but not destroyed.

(Refer Slide Time: 6:51)

Start/Restart Your Activity i
* onRestart() is called when activity comes back to the foreground from
the stopped state

* Can be used to perform special restoration work that might be necessary only
if the activity was previously stopped, but not destroyed.

* onStart() method is called every time an activity becomes visible

And on start will be called every time an activity becomes visible. Which means
that if your activity is only going from a visible mode to hidden mode, hidden
mode to visible mode on start method will be called every time. While on restart

will be called only when the activity went into the stopped state. Please try to

understand the difference in which these two methods are called. Let us see

through the diagram

(Refer Slide Time: 7:23)

Pausing an Activity [

* Recommended actions for onPause() callback:
+ Stop animations or other ongoing actions that could consume CPU.

+ Commit unsaved changes, but only if users expect such changes to be permanently
saved when they leave (such as a draft email).

* Release system resources, such as broadcast receivers, handles to sensors (like GPS),
or any resources that may affect battery life while your activity is paused and the
user does not need them.

* The Activity instance is kept resident in memory and is recalled when the
activity resumes.
* No need to re-initialize components that were created during any of the callback
methods leading up to the Resumed state.
* Avoid performing CPU-intensive work during onPause()
+ E.g. writing to a database

* It can slow the visible transition to the next activity

+ Perform heavy-load shutdown operations during onStop()

Pausing and Resuming an Activity i

* Aactivity is paused when it is partially obstructed by another activity
but remains visible
* E.g. a semi-transparent activity opens
* If an activity is fully obstructed and not visible, it stops

* onPause() is called when an application enters the paused state.
* Allows to pause ongoing actions that should not continue in a paused state
e.g. playing a video
* Allows to persist any information that should be permanently saved in case
the user continues to leave your app.
* First indication that a user may leave the activity

* If the user returns to your activity from the paused state, the system
resumes it and calls the onResume() method.

So you see that on start is being called even in beginning because the application

has to become visible.

(Refer Slide Time: 7:28)

Activity Lifecycle i
Resumed
i)
onResume() onPause()
onResume()
Started Paused
) T\ e)
onStart() onStop()
onStart()
Stopped

— Created -onRestart()——

T
_ (dden))/ cn:eiucyu

5] o

While there is no on restart, but on restart is called an application is stopped and
after that it will call on start to make it visible. Now let us look at we creating an
activity.

(Refer Slide Time: 7:48)

Stopping and Restarting an Activity 1D

* Activity may stop in different scenarios

* The user opens the Recent Apps window and switches from your app to
another app. The activity in your app that's currently in the foreground is
stopped. If the user returns to your app from the Home screen launcher icon
or the Recent Apps window, the activity restarts.

* The user performs an action in your app that starts a new activity. The current
activity is stopped when the second activity is created. If the user then
presses the Back button, the first activity is restarted.

* The user receives a phone call while using your app on his or her phone.

* Methods, onStop() and onRestart(), allow to specifically handle how
an activity handles being stopped and restarted

Just some time back | told you the scenarios in which an application can be
stopped.

(Refer Slide Time: 7:52)

Recreating an Activity ([

* An activity is destroyed due to normal app behavior
* when the user presses the Back button
* the activity signals its own destruction by calling finish().

* The system may also destroy an activity if it's currently stopped and
hasn't been used in a long time or the foreground activity requires
more resources so the system must shut down background processes
to recover memory.

* The system creates a new instance in the user navigates back to it using a set
of saved data.

* The saved data is called “Instance state”
* Key-value pair stored in a Bundle object.

Now let us see when an application can be destroyed due to normal app
behaviour. For example you may press the back button to destroy your
application. Your application itself may signal its own destruction by calling
finish. That is your application ends. This is similar to any other program that you
have written in JAVA.

That ends after some time of the executions, these are the scenarios where, which
are considered the normal app behaviour. However the system may also destroy
an activity if it is currently in stopped state and it has not been used in a long time
and the foreground activity requires more resources. WWhenever you are running
multiple applications on android and if the android system feels that the

application which is running required more resources.

It may Kill any activity that is currently in the stopped state and has not been used
for a long time. However because it is the android system which is killing the
application, before destroying the application it creates a new instance in case the
user comes back to that application and this new instance is used when the user

tries to come back by pressing the back button.

The data which is saved to create this new instance is often called as the instances
state which is nothing but a key value pair stored in a bundle object. You may
remember bundle object from the parameter that will passed in the on create

function. Let me show it to you one more time. | will run my android studio. We

will go back to our program where we will see the bundle object. Again | am
using a simpler version of the program not the version that we just created in last

week classes. Yes

(Refer Slide Time: 10:03)

1 MK Onetedod b b - oy - s 2
£ You Yo Cote My B fd B Tk W5 Hodow i

DHO ¥4 XO0 QR ¢% EEm P 6V AGE ¥E FLES

? Q

Quikcrtygra * | dokodlrtesand x Q) Pt md g st

Ve b Szem e

public class QuizActivity extends AppCompatActivity (
private Button m¥rueButton;
private Button mFalseButton;

@override
protected void onCreate (Bundle savedInstanceState) {
super. onC;
setConten!

te(savedinstanceState);
(R.layout.activity quiz);

mTrueButton = (Bul
mTrueButton. setOn
€override

n) findviewById(R.id.tr
Listener (new View.0nCl

public void onClick(View view) {

(o

~Te 0 EHAR

As you seen the on create we are passing a bundle.

(Refer Slide Time: 10:09)

1 - KD P Wb - St 12 0 x
4 You e o Aoy B B4 b Tk G5 kot
3 ¥ 400 - wo b 0V LGE ¥8 FLET ? am
G umas
g o S 0% 81 0 Cukayer | S dedodliietinix) Pt ma g it
5 dic D 0 The eans companerts e ety 1o st Googe Reomtry, Gl %
- S p—— Y S o
& public class QuizActivity extends AppCompatActivity (
& private Button mTrueButton;
3 private Button mFalseButton;
s
2 G you know_?
€override [
protected void | PRI e e
super.onCr¢
setContent§
mTrueButtor n);
mTrueButtor ener() {
Q0verri @ owinatns
pblLic Crete T [g
- = S — 4
[rp—
votew [Gonae L T - |

« Initializing ADB

package android.os;
import ...
public fina] class pundle extends BaseBundle implesents Cloneable, Parcelable |
public static final Creator<Bundle> CREATOR = null;
public static final Bundle EMPTY = mull;
public Bundle() { throw new RuntimeException("stub!®); }
public Bundle(Classloader loader) (throw new RuntimeException("Stub!"); }

public Bundle(int capacity) (throw new RuntimeException("Stub!"); }

voto [Covse L T - |

e~ e 0 EHEBR

This is the bundle that we are talking about. The bundle is nothing but an object
of type class bundle. If I click I go and I see this final class bundle, next time base
bundle implements (()) (10:24). So saved instance state is the object of the type
class bundle.

(Refer Slide Time: 10:34)

Recreating an Activity i

* The activity is destroyed and recreated each time the user rotates the
screen.

* By default, the system uses the Bundle instance state to save
information about each View object automatically

* Other state information, e.g. member variables, need to be saved by
the app

+ override the onSavelnstanceState() callback method

* The system calls this method when the user is leaving your activity and passes
it the Bundle object that will be saved in the event that your activity is
destroyed unexpectedly.

* If the system must recreate the activity instance later, it passes the same
Bundle object to both the onRestorelnstanceState() and onCreate() methods.

M 00 EHEA2Q

The activity is destroyed and restarted each time the user rotates the screen. We
saw that in last week’s lecture. That when we rotated the screen all the question
order was reset. Now by default the system uses the bundle instance state save
information about each view object automatically. That is system is handling for

all the view objects that you are using.

Anything more than the view object you have to handle yourself. So suppose if
you if we were displaying multiple questions 1, 2, 3, 4 which are being monitored
by progress of the intex in the array. The integer variable that I am using for the
array needs to be maintained by me as a developer. While the view object that is
the buttons, the texts, edit text, text view fills they will be maintained by the

system.

So all the other state information for example number variables, need to be saved
by the app by you. You will have to code for it. How do you do that? You
override the on save Instance State callback method. The system calls this method
when the user is leaving your activity and passes it the bundle object that will be

saved in the event that your activity is destroyed unexpectedly.

If the system must create the activity instance later, it passes the same bundle
object to both the on store on restore Instance State and on create methods. Let us
see this in a simple diagram. From destroyer on save Instance State method is

called application received.

(Refer Slide Time: 12:29)

) L T el s ——y
Recreatina an Activitv)
\ecreating an ACtIVITY lll»
by, J
static final String STATE_SCORE = "playerScore";
static final String STATE_LEVEL = "playerLevel";
— @Override
(vise) —{ 1 jonSavelnstanceState)—| y Destroyed public void Al = eState) {
[/ Save the user's current game state
A savedinstanceState.putint(STATE_SCORE, mCurrentScore);
ig‘j savedInstanceState.putint(STATE_LEVEL, mCurrentLevel);
I
2) onCreate(
; // Always call the superclass so it can save the view hierarchy state
Crosted {3 FonResioreinsarceStae)—»| Resumed uper. d eState);

Source: https://developer.android.com/training/basics/activity-lifecycle/recreating.html
L) e~ us0EAENQ

From resumed on restore instance state is called an application created. Here | am
giving you a simple program sample that shows you how to store values in the
bundle and for (())(12:46) key value pair. For example | want to store the values
of the state is called and state level. I going to the method | have over written it.
The override you see.

In that method | use save Instance State.putint STATE SCORE,m CurrentScore.
So mCurrentScore here is my variable that holds the current value of this score
and these values are now stored. In next slide | will see how to restore from these

values. So restoring (your ap) your activity state.

(Refer Slide Time: 13:34)

TS ey Ty me
Restoring Activity State [y
) You Can recover your Saved State i(:l‘:e:ei:evmdonCreale(BundlesavedlnstanceSta(e)(
from the Bundle that the SyStem super.onCreate(savedinstanceState}; // Always call the superclass first
passes to your activity

* Both the onCreate() and

onRestorelnstanceState() callback
methods receive the same Bundle

/] Check whether we're recreating a previously destroyed instance
if (savedinstanceState != null) {

|/ Restore value of members from saved state

Fhat cont.ains the instance state G = getint{STATE SCORE);

information mCurrentlevel = savedinstanceState getint(STATE_LEVEL);
+ onCreate() method is called

whether the system is creating a ele{

/[Probably initialize members with default values for a new instance

new instance of your activity or ;

recreating a previous one
* Must check whether the state }

Bundle is null before attempting to
read it.

e~ a8 6 EAH2Q

You can recover your saved state from the bundle that the system passes to your
activity. Both the on create and on restore Instance State callback methods
receive the same bundle that contains the instance state information on create
method is called whether the system is creating a new instance of your activity or

recreating a previous one.

Because it can be called both instances, you must check whether the state bundle
is null before you try to read it. So let us see a simple program code on how to do
it. (So w) so in the on create we go, we want to check (whether the) whether these
any useful value in the saved instance state or not? First we check it for null and
then we restore our values which are earlier we stored. There we store them in a

m Current Score, m Current Level here we restore.

(Refer Slide Time: 14:33)

Recreating an Activity e

static final String STATE_SCORE = "playerScore";
static final String STATE_LEVEL = "playerLevel";

g"“““‘)‘ —{)rosmensancesiasg—»{(Doromd)
~ |
2) onCreate()
- |

A

Created 3 -onRestorelnstanceState()— M"-)d)
Q A (visible)

@0verride

public void
|/ Save the user's current game state
savedinstanceState.putint(STATE_SCORE, mCurrentScore);
savedinstanceState.putint({STATE_LEVEL, mCurrentLevel);

(Bund eState) {

/] Always call the superclass so it can save the view hierarchy state

[

uper.onsS: eState);

}

Restoring Activity State

* You can recover your saved state
from the Bundle that the system
passes to your activity

* Both the onCreate() and
onRestorelnstanceState() callback
methods receive the same Bundle
that contains the instance state
information

+ onCreate() method is called
whether the system is creating a
new instance of your activity or
recreating a previous one

* Must check whether the state

Bundle is null before attempting to
read it.

“Tue 0 EH 2R

The another way of restoring is to implement the on restore instance state.

@Override
protected void onCreate(Bundle savedinstanceState) {
super.onCreate(savedinstanceState); // Always call the superclass first

/] Check whether we're recreating a previously destroyed instance
if {savedinstanceState != null) {

|/ Restore value of members from saved state

mCy = :_SCORE);
me. = getint(STATE_LEVEL);
Jelse{

/] Probably initialize members with default values for a new instance

(Refer Slide Time: 14:40)

Restoring Activity State I
. | m ple me nt public void onRestorelnstanceState(Bundle savedinstanceState) {
onRestorelnstanceState(), which
the system calls after the
onStart() method.

* The system calls
On REStO rel n Sta n CEState() Onl\" If mCurrentScore = savedinstanceState.getint{STATE_SCORE);
there |S a Saved State to restore mCurrentlevel = savedinstanceState.getint{STATE_LEVEL);

* No need to check whether the !
Bundle is null

/I Always call the superclass so it can restore the view hierarchy

uper.onR | eState);

J/ Restore state members from saved instance

EXYTLED
This is a method which the system calls after the on start method. A good point
about this method is that system calls it only if there is a saved state to restore
which means that there is no need to check whether the bundle is null. So in case,
we take this route we define the method and we will directly restore without
checking for null or empty. For these lectures | had been using the reference from

developer.android.com

(Refer Slide Time: 15:16)

References 1[5

* https://developer.android.com

M8 60 CAHE 2R

You can go to website and find out information that | am using in this lecture.

Now let us go to our program and try to see some of these things.

(Refer Slide Time: 15:33)

EFEILAY ? Q
mergs € Quokcnty
setyjos * | B hebolcletsnd x

(0 Pt ma g it
The bown companets ¢ty 1o bt Googe oo, Gk P
Ve 86 e Sem e

& public class QuizActivity extends AppCompatActivity (

private Button mTrueButton;
private Button mFalseButton;

. 1

« © protected void onCreate (Bundle savedInstanceState) (
super.onCreate (savedInstanceState) ;
setContentView (R. layout.activity quiz);

uTrueButton = (Button) findViewById(R.id.true button);
¢ mTrueButton. setOnClickListener ((view) - {
Toast.makeText (QuizActivity.this, "Correct!", Toast.LENGTH SHORT).show();
i

oL

| I |
oo [Gonao 3 B o sesetrcsin

TasO0CEHEER

(9 Pttt gt
e o ot sty 13 bt Goge e, Gsge P
private Button mPalseButton; Ve 5 o Sgzemiroge

protected void onCreate (Bundle savedInstanceState) (
super.onCreate (sayedInstancestate) ;
setContentView (R.layout.activity quiz);

mTrueButton = (Button) findViewById(R.id.true button);
¢ mTrueButton.setOnClickListener ((view) - {
Toast.makeText (QuizActivity.this, "Correct!", Toast.LENGTH SHORT).show();
h:
mFalseButton = (Button) findViewById(R.id.false button);

« mFalseButton. setOnClickListener ((view) - {
Toast.makeText(QuizActivity.this, “Incorrect!", Toast.LENGTH SHORT).show();

5

Voteu | v DL T - |

Frono [Ekeovibenta | 3 T

T80 EH AR

This is our on create method and this is our saved instance state. This is our

manifest file which is telling that my quiz activity with the main activity.

(Refer Slide Time: 15:44)

-l
50 ou g ok Aoy S B B Tk 5 Bkt

OvAADB AR ¢ HEm P 0N LGE FE SLAT ? Q
Mk Ciagp D Clman B Aadidhundetsm

3| o e ®

) otiom g it
O o camy corpets v sty s 2 o Rt e 04
mani fest Ve 86 e Spten roge

warve|

android:supportsRtl="true"
android: theme="gstyle/AppTheme”>
<activity android:name=".QuizActivity">
<intent-filter>
<action android:name="android.intent.action.MAIN" />

2 3 swtre

<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>

</activity>
</application>
</manifest>
e oL
(e e | i -
:,,w, Fea) oo [Gonae DL, |
HEIE
3|
HO
3o
3
704
o B
i[°

e You Ngee ot e oo B R Todk VG5 Edow tep

-] B QR ¢¢ EEm- PO iGE ¥8
Tmanees | € Gkt
B hebolntetand *

- Pt nd Poge st
O e dcans capanets e iy 1s sae: Goge R, Gesge .
Ve 8 itz Ssem oy

é ¥ § protected void onCreate (Bundle savedInstanceState) (
Y super.onCreate (savedInstanceState) ;
é setContentView(R.layout.activity quiz);
uTrueButton = (Button) findViewById(R.id.true button);
« mTrueButton.setOnClickListener ((view) -+ {
Toast.makeText(QuizActivity.this, "Correct!", Toast.LENGTH SHORT).show();
Hi
mFalseButton = (Button) findViewById(R.id.false button);
L mFalseButton. setOnClickListener ((view) = {
Toast.makeText (QuizActivity.this, "Incorrect!", Toast.LENGTH SHORT).show();
i [
: = en -netsp J -
: emulator: WARNING: VM heap size set below hardware specified minimum of 384MB
gi emulator: WARNING: Setting VM heap size to 384MB
39 Hax is enabled
4% kax ram size 0260000000
g B is working and emulator runs in fast virt mode.
¥ console on port 5554, ADB on port 5555
*

BARR] 27000 4 giosnvents Eirmes & v
g s oy remeues, g oo e sac e ipescasiiaseidn sl sSpeincs, o viee il smo e

200 Bo ¢~ usO0HEEAQ®

This is the java file. That defines the quiz activity. If | run my program, it will

take a while because we are starting the emulator.

(Refer Slide Time: 16:00)

() Potterm 208 g st
O e owmy compmets e ity 1s sae Goge R, Gesge W
Vet o Szem o

e ¢ [tanceState) (

| A
4z);
S
O
Y O |(R.1d.true button);
1| e {
.this, "Correct!", Toast.LENGTH SHORT).show();
Q

<& [d(R.id. false button);

android Ol = ¢
O [.this, "Incorrect!", Toast.LENGTR SHORT).show();

console on port 5554, ADB on j

3 Your emulator is out of date, d Studio:

{8 - start Android Studio

3; - Select menu "Tools > Andro;
- Click "SDK Tools" tab

§ - Check "Android SDK Tools"
£ - ciek ok

I am hoping that now we have started the programming in android studio. If you
are not then please start. Without writing your own programs, you will not learn
android programs.

(Refer Slide Time: 16:12)

) Pt 208 g st
O e owmy compmets e ity 1s sae Goge R, G W
Vi o Sem e

¢ [tancestate) (

-
dz);
o
O
9 |(R.id.true button);
a M) =+ {
.this, "Correct!", Toast.LENGTH SHORT).show();
Q

<& [d(R.id. falke button);

T lew) = {
.this, "Incorrect!", Toast.LENGTR SHORT).show();

, console on port 5554, ADB on |

= Your emulator is out of date,

{8 - start Android Studio

37 - Select menu "Tools > Andro
~ - Click "SDK Tools" tab

- Check "Android SDK Tools" d

- Click "0K"

ot Girmes 6 2 vengn

T 0 EEne@

) Pt nd Poge st
9 e dewns carpanets e sy 1o satt: Goge Rt Geoge .
Ve 8 o Sczem e

tancestate) {

o
9
< 1z);

o
b 0 |(R.1d. true button);
M =+ {
.this, "Correct!", Toast.LENGTR SHORT).show();
Q

¢ [d(R.id.false button);

T e =~
O |.this, "Incorrect!", Toast.LENGTH_SHORT) .show() ;

Dina 27000 B inadenta B trmes & 8 veiogn
Gt e ¢ o mvems e w
(o]

Bo ¢~ usoEEnPM

Let us wait in the application as long as to on our emulator. Yes so as you see it is

a simplified version of our project.

(Refer Slide Time: 16:38)

o i You liwgee

) Pt a8 g tdstes
O e e carpanerts we iy to sate; Gaoge Reamto, Googe M.
Ve 8 o Sczen e

tancestate) (

4z);

2 2 & c

By ¢ |(R.id. true button);

W = {

.this, "Correct!", Toast.LENGTH SHORT) .show();
Q

¢ [d(R.id.false button);

e~ (
O [.this, "Incorrect!", Toast.LENGTE_SHORT) .show() ;

Bina 27000 R Meamibenta B trmes & 3 e
3 Gase st e foms mvems e w

e~ a0 EEnREm

Press true, | press false- nothing happens. Let me rotate my phone. Now when |
rotated this phone, you cannot see a change but if we had move to another

question it would have been restarted from the very beginning.

(Refer Slide Time: 16:47)

B (e Yoo Noigue Code Aahe feicr fuld An Jooh VS Hodee Uiy
HO ¥4 XDB QR ¢ Em P 0V LGE ¥E SLAT ?

s Ciogp Do Clmn Djpa Spieg s < Gk
. 8- & Qatatyma »

¥y

() Potiom 2 Pogn Ut
e cany companets e iy 1o ot G R, Gasge 9B
Ve 86 e Sem oy

g

Dueidles | Sl 903

€ pe button);

l:azzec':"', Toast.LENGTH_SHORT) .show();

o

alse button);

Incorrect! ", Toast.LENGTH SHORT) .show():

. . y ity o = -0 x
o You lwgee (o e S B4 R Jok S adoe Uy

DO ¥4 X000 &8 me? 0P LGE ¥E LA ?
Bla Dmetae < iy

| € Gasatyns | B ddodlestetind ©

) Pt nd Poge st
O e dcans crpanets e iy ts sat: Googe R, Gesge .
Ve 8 e Sen g

¢ protected void onCreate(Bundle savedInstanceState) (
super.onCreate (savedInstanceState) ;!

setContentView(R. layout. activity quiz); I

uTrueButton = (Button) findViewById(R.id.true button);
€ mTrueButton.setOnClickListener ((view) - {

Toast.makeText(QuizActivity.this, "Correct!", Toast.LENGTH SHORT).show();
h:

mFalseButton = (Button) findViewById(R.id.false button);

¢ mFalseButton. setOnClickListener ((view) = {

Toast.makeText (QuizActivity.this, "Incorrect!", Toast.LENGTR SHORT).show():
h;

[- %) Btae Som oy et mricae [

21000 | sV Eirmes & gvenn

g ; 7y & -0 x
B 50 Yo Y Code My B B4 A T VG5 e i
DHO ¢4 X000 QR ¢2 HEm-r o LGN $E SLE+ ?

g D D De Dmeseue < Qushoiey

) Pt g g st

© e oan crpanets e iy 1o ot G R, Gesge 9%
el 86 o Stem Iruge

import android.support.v7.app.AppCompatActivity;

import android.os.Bundl

g

import android.widget.Button;
import android.widget.Toast;

public class QuizActivity extends AppCompatActivity (1

private Button mTrueButton;
private Button mFalseButton;

¢ protected void onCreate (Bundle savedInstanceState) (
super.onCreate (savedInstanceState);

o oL
W bt N 70 - -]

S i
hane roeo W BRE] Eimes & v

4
3 Gate v b 3 mnse sy s

Because every time you rotate your screen, the application goes through the
complete cycle. And because we are not implementing nor restoring anything
save instance state, | will lose the value that | may need in order to maintain

current question command.

That is it for this lecture. In the next lecture we will learn how to do logging in
android. Logging is a very important feature used to do debugging as well as to

understand the behaviour of a of an application. Thank you!

