
Mobile Computing

Professor Pushpendra Singh

Indraprastha Institute of Information Technology Delhi

App Fundamentals
Lecture 12

Hello, you have already developed an application and you already know few of

the basics. In this lecture we will go deeply into some application fundamentals

and we will cover some of the details that are needed to and we will cover some

of the details that are needed to master android program.

(Refer Slide Time: 0:37)

For this lecture, my reference is android API Guide which is available at the

given link.

(Refer Slide Time: 0:44)

Let us look at android applications once again. The android SDK tools compile

your code along with any data and resource files into an APK file. An APK file

is an android package file with the suffix .apk. As u may have seen when you

developed your application.

This is in the same line as we have JAR for JAVA type files or other archive files

that you may have used earlier in your programming career. In android the one

APK file that you create for your application contains all the contents of an

android app that means all the resources that had been using all the executable

code etc.

APK is the file that any android powered device will use to install the app

whether it is on tablet, whether it is on phone, whether it is on Google glass, or

whether it is in TV that run on android. They all need an APK file.

(Refer Slide Time: 1:49)

Android applications once they are installed on a device, they live in their own

security sandbox. This is a very good approach to make sure that one application

does not destroy the whole system. Earlier in computing systems, you may have

seen that if one application scratched, sometimes your system needed to be

rebooted.

In fact you may experienced the same thing with your PC from time to time.

However this situation is not desirable with a mobile phone and specially with an

open market where multiple applications are developed from various entities so

we cannot allow the situation in with crash by an application requires your phone

reboot.

So the android operating system which is an approach that it creates a sandbox

for each application. A sandbox is like a virtual box in which your application

runs and if it crashes the effects remains limited to the box. Android sandbox

approach comes from the JAVA sandbox techniques.

The android operating system itself is a multi user Linux system and each app

acts as a different user. So as you may have seen in the multi user system each

user is separated by another user. And each user is uniquely identified by the

system. similarly in android each android application is identified by a unique

Linux user ID and one application is separated from another application and the

system sets permission for all the files in an app so that only user ID assigned to

that app can access them.

These are some very sound operating system principles. You may have studied

some of them while doing your operating system codes. Android applies all of

them to ensure that application run in a linked environment where if an

application crises all wants to maliciously access data for other application. It is

not allow to impact the system.

So each process in android has its own virtual machine and an app code runs in

complete isolation from other apps. So by default an application will run as its

own Linux process. Android starts the process when any of the app’s components

need to be executed. We will soon learn about the different app components.

And when the application stops then the system shuts down the process when is

no longer needed and the system recover memory and other resources for other

applications that are running. You may have studied some of the principles in the

operating system if not then maybe you would like to revise you operating system

concept once again. Overall android is very very similar to what a Linux

operating system is because that is the base on which the android is build up on.

(Refer Slide Time: 5:07)

Android system implements what we call as the principle of least privilege which

means that an application will have just as much privilege as it needs. That is an

application by default can access only the components that it requires to do its

work and nothing more. So an app cannot access parts of the system for which it

is not given permission.

This ensures that an application maliciously or non maliciously do not affect the

system at large. However with the principle of least privilege android also allows

mechanisms for an application to share data with other app and for an app to

access system services. As you may imagine this is very important and necessary

to develop wonderful applications for example if you want to develop an

application which access its camera that application must have some way to

communicate with the camera app.

(Refer Slide Time: 6:12)

So an app can request permission to access device data whenever it wants. For

example user’s contacts, SMS messages, the mountable storage, camera,

Bluetooth and more. Android requires that the user explicitly grant these

permissions. You have already experienced that when you installed an app, and

the app asks your permission for example if you install an app such as PayTm

which many of us use for paying uhh which many of us use for paying bills.

It requires access to our SMS messages because sometimes it wants to access

SMS to authenticate itself and to validate its user. Similarly there are other

applications which require access to your contact list or to your camera or to your

GPS or any other system resource and every time an explicit permission from the

user is required at a time of the installation.

It is also possible in android that two apps share the same Linux user ID because

they can share the same Linux user ID they can access each other’s files. We will

learn more about it in later weeks when we have term then. We will learn about

later weeks, once we developed to our advanced programming environment.

We will learn more about it in later weeks, once we have developed our basic

understanding and would develop more advanced applications. Now to conserve

system resources, apps with the same user ID can also arrange to run in the same

Linux process and share the same VM. But these apps must then also signed with

the same certificate.

Don’t worry about these details, we will be discussing them much more in (det)

don’t worry about these details we will be discussing them in later chapters.

Don’t worry about details, don’t worry about these details we will be discussing

them in more detail in later.

(Refer Slide Time: 8:28)

Now, let us look at app components. An android application (th) now let us look

at app components. There are essentially four building blocks for any android

application. An android application may have either one of them or two of them

or three of them or all four of them.

You have already experienced one of it. It’s called activities. The other building

blocks are services, content providers and background receivers. Each of these

components defines a point through which the system can enter your application.

(Refer Slide Time: 9:12)

Activity. As you already have seen activity represents a single screen with a user

interface. An activity is implemented as a subclass of Activity class. For example

if you have an email app then there may be an activity that shows you the list of

emails. Another activity to compose an email. And another activity for reading

email. So the single email app may consist of three activities.

Currently in our math quiz application, we are only using one activity but very

soon we will move to implement more activities into same applications. And all

though the activities work together uhh and all though the activities work together

(prohide). And all though the activities work together provide an osc experience

to the user.

They are independent of others. Uhh and as such a different application can start

any one of the activities. If the parent applications allows and as such a different

application can start any one of the activity of another application as long as it is

provided by the permissions. For example a camera app can start the activity in

the email app that composes new email in order a user to share a picture.

You may have experienced some of these when you open your Whatsapp or your

Facebook application and you want to share something. An activity is also

implemented. An activity is implemented as a subclass of activity and as you

have already developed one activity in your program we will be learning more

about activities later on.

The another building block is one has called a service. A service is a component

that runs in the background to perform long running operations or to perform

work for remote processes. A service does not provide a user interface. Let us

take some example of services. One of the example could be a service that

downloads data and the background as you may imagine (down) as you may

imagine downloading data and the background does not fully require a user

interface.

Another example is a service that plays music in the background while the user is

in a different app. So there could be various services that you can implement

which work in the background. Another component such as an activity can start

the service and let it run or bind it to others in order to interact with it. A service

is implemented as a subclass of a service. Let’s look at the another app

component.

(Refer Slide Time: 12:46)

Content providers. A content provider manages a shared set of app data. As you

can imagine from the name that it is providing some content. Now you can store

this data in the file system. In a (sik in a) Now you can store this data in a file

system an SQLite database, on the web or any other persistent storage location

your app can access.

And through the content provider other apps can query or even modify the data as

long as the content provider allows it. You may also use content providers for

reading and writing data that is private to your app and not shared.

That is a content provider can be used both for saving private data and also the

data that you may wish to share others. Content provider is implemented as a

subclass of content provider and it must implement a standard set of API’s that

enable other apps to perform transactions.

(Refer Slide Time: 13:57)

The fourth component is the broadcast receiver. Broadcast receiver is a

component that responds to system wide broadcast announcements. For example

a broadcast announcing that the screen has turned off, or that the battery is now

low sometimes you may have seen a notification says battery is low 15% or

battery is low 3% please plug in your phone.

So these are the kind of broadcast that we are talking about it. An app can also

initiate broadcasts so for example an app may want to broadcast that has

downloaded the data that you wanted to download. The broadcast receiver may

create a status bar notification they do not really need a screen. But status bar

notification is very common for broadcast receiver to implement so that they can

alert the user when the correspondent broadcast event has occurred.

A broadcast receiver is just a gateway to other components and is intended to do a

minimal amount of work. Broadcast receiver is implemented as a subclass of

broadcast receiver and each broadcast is delivered as an intact. So far we have not

covered intent in our lectures neither our application has any intent building.

 As of now you can understand intent as only a message object. That is it is a

message which is delivered to get some action done. We will learn more about

intent in our later classes.

(Refer Slide Time: 15:38)

Now the beauty of android lies in that in any app can start another apps

component. Just as I give previous example your app may want to use the camera

app to capture a photo. And when the system starts a component it is starts the

process for that app if it is not running. And instantiates the classes needed for the

component.

If your app starts an activity in another app and that activity runs in the process

that belongs to another app and not in your app’s process. Let’s go through these

points again. Suppose you want to run your application and your application has a

component let’s take activity. The moment you want to start this activity there

will be a corresponding process for your app.

And all the classes needed for this component activity will be instantiated. Now

this activity wants to initiate another activity in another app. Now the new

activity will run in the process that belongs to the another app and not your

process. Because essentially you are running an activity of an another application.

Due to this feature android apps do not have a single entry point. As you may

have may imagine as you may imagine an apps component can be instantiated by

any other app so there is not a single entry point. A camera app may have many

components and these components may be initiated in a different order by

different apps.

And this is also the reason why there is no main function in an android program.

Some of you already have noticed that they could not find the main function.

Others may have not looked closely. But now you can look for this and you will

not find the main function. Because the main function essentially implies that

that’s where the execution starts.

This is not true for the android application. An android application may start

whenever any component is initialized. As told earlier the system runs each app

in a separate process with permission that restricts access to other app. So an app

cannot directly activate a component from another app. But what it does is that it

makes a request to the system. And when it makes a request to the system, the

system activates that component for the app.

(Refer Slide Time: 18:36)

Let us learn a little bit more about intent and activity components. Activity,

services and broadcast receivers these three components are activated by an

asynchronous message which we called an intent. Like I told you earlier intent is

more like a message object. For activity and services an intent defines the action

to perform.

While for broadcast receivers, the intent defines the announcements being

broadcast. For the fourth component the content provider it is not activated by

intents. It is activated when targeted by a request from a content resolver. We will

read more about it in later lectures.

(Refer Slide Time: 19:32)

So in intent bind individual components to each other at runtime, whether the

component belongs to your app or another. These are like the messenger which

goes from one component to another component. You create an intent in your

program with an intent object. An intent object defines a message to activate

either a specific component or a specific type of component.

In android we can define both implicit and explicit intents. Do not worry too

much we will soon be implementing intents in our program and then you can

come back to these lectures and make more sense of what we have learnt. And

there will also be more details in later chapters about intents.

(Refer Slide Time: 20:28)

Now the last topic of this lecture the manifest file. We have already see the

manifest file in project. The manifest file declares all the components of the app.

It is used by the android system to know what components exist in an app.

Manifest file identifies the user permissions that app requires.

For example X is to (())(20:55) or to use user’s contact or to use user’s SMS

services, camera app, GPS etc etc. The manifest file also declares minimum API

level required by the app. And it also declares hardware and software features

used or required by the app, it also declares API libraries that a app needs to be

linked against, such as if you are using Google maps library. A very good detail

instruction of a manifest of manifest file is available at this link. Let’s click it and

try to see.

(Refer Slide Time: 21:42)

You can see this the same link which I had given. It defines app manifest. As you

can see that this is the same link that I had given if you click on it this page

below. Let’s go through it to understand the manifest file. So every android

application must have a manifest file. Every android application must have a

manifest file and that manifest file must be name androidmanifest.xml.

This name is precise that is you cannot change it. The manifest file uses all the

essential information about your application that the android system requires. It

needs the JAVA package describes the components of the application determines

which processes will goes to application components declares permission etc etc.

Now let us look at the structure of manifest file.

(Refer Slide Time: 22:53)

As you can see that the manifest start. As you can see that manifest file starts

from the manifest tag and then it goes into user formations. User SDK

configuration, features etc etc. And then it comes to application. Let us try to see

what these fields are I will also open our program that we have developed.

(Refer Slide Time: 23:22)

This is our manifest file. As it is given here. Without having anything on top we

don’t have anything on top except the package given. Then we have the

application. Inside the application some fields are given. We will try to

understand them. But let’s go back to the original structure of the manifest file.

A manifest file starts with following fields. User permissions, SDK,

configurations, support system etc. Then it comes to application components,

activity, services, broadcast receivers and content providers. If you click on any

of these fields you will get the detailed value of that.

(Refer Slide Time: 24:34)

So in your free time you may want to click on it and find out what it means. For

example user SDK must be main SDK version target as to (())(24:48) SDK

version . You have already seen some of these earlier when we were setting our

project.

(Refer Slide Time: 24:55)

Whatever settings you did in your project come in a manifest file and your

manifest file is used by android to understand your application requirements.

(Refer Slide Time: 25:07)

That is it for today’s lecture. In this lecture we went through some more

fundamental knowledge of android application and we also went through the

manifest file and you also came to know that why android application is do not

have a main function. For this lecture I am using the reference of android API

guides which are available on developer.android.com. Thank you!

