Mobile Computing
Professor Pushpendra Singh
Indraprastha Institute of Information Technology Delhi
App Fundamentals
Lecture 12

Hello, you have already developed an application and you already know few of
the basics. In this lecture we will go deeply into some application fundamentals

and we will cover some of the details that are needed to and we will cover some

of the details that are needed to master android program.

(Refer Slide Time: 0:37)

Ref: Android AP|
Ref: Android AP

https://developer.android.com/guide/components/fundamentals.html

T

| ' I |

For this lecture, my reference is android APl Guide which is available at the

given link.

(Refer Slide Time: 0:44)

/V\ .,\l-,; A A A T(“ i-‘:‘\ Hr
Android Applications 1

* The Android SDK tools compile your code—along with any data and
resource files—into an APK: an Android package

* APK is an archive file with an .apk suffix.
* One APK file contains all the contents of an Android app
* APK is the file that Android-powered devices use to install the app.

I A) |

Let us look at android applications once again. The android SDK tools compile
your code along with any data and resource files into an APK file. An APK file
is an android package file with the suffix .apk. As u may have seen when you

developed your application.

This is in the same line as we have JAR for JAVA type files or other archive files
that you may have used earlier in your programming career. In android the one
APK file that you create for your application contains all the contents of an
android app that means all the resources that had been using all the executable

code etc.

APK is the file that any android powered device will use to install the app
whether it is on tablet, whether it is on phone, whether it is on Google glass, or
whether it is in TV that run on android. They all need an APK file.

(Refer Slide Time: 1:49)

/\

N\ nN |- fp AnanlicratiAnne nrs
Android Applications D

* Once installed on a device, each Android app lives in its own security
sandbox

* The Android operating system is a multi-user Linux system in which each
app is a different user.
+ By default, the system assigns each app a unique Linux user ID (the ID is used only by
the system and is unknown to the app;).

* The system sets permissions for all the files in an app so that only the user ID
assigned to that app can access them.

* Each process has its own virtual machine (VM), so an app's code runs in
isolation from other apps.

* By default, every apF runs in its own Linux process. Android starts the
process when any of the app's components need to be executed, then
shuts down the process when it's no longer needed or when the system
must recover memory for other apps.

Android applications once they are installed on a device, they live in their own
security sandbox. This is a very good approach to make sure that one application
does not destroy the whole system. Earlier in computing systems, you may have
seen that if one application scratched, sometimes your system needed to be

rebooted.

In fact you may experienced the same thing with your PC from time to time.
However this situation is not desirable with a mobile phone and specially with an
open market where multiple applications are developed from various entities so
we cannot allow the situation in with crash by an application requires your phone

reboot.

So the android operating system which is an approach that it creates a sandbox
for each application. A sandbox is like a virtual box in which your application
runs and if it crashes the effects remains limited to the box. Android sandbox
approach comes from the JAVA sandbox techniques.

The android operating system itself is a multi user Linux system and each app
acts as a different user. So as you may have seen in the multi user system each
user is separated by another user. And each user is uniquely identified by the
system. similarly in android each android application is identified by a unique

Linux user ID and one application is separated from another application and the

system sets permission for all the files in an app so that only user ID assigned to

that app can access them.

These are some very sound operating system principles. You may have studied
some of them while doing your operating system codes. Android applies all of
them to ensure that application run in a linked environment where if an
application crises all wants to maliciously access data for other application. It is

not allow to impact the system.

So each process in android has its own virtual machine and an app code runs in
complete isolation from other apps. So by default an application will run as its
own Linux process. Android starts the process when any of the app’s components

need to be executed. We will soon learn about the different app components.

And when the application stops then the system shuts down the process when is
no longer needed and the system recover memory and other resources for other
applications that are running. You may have studied some of the principles in the
operating system if not then maybe you would like to revise you operating system
concept once again. Overall android is very very similar to what a Linux

operating system is because that is the base on which the android is build up on.

(Refer Slide Time: 5:07)

Android Applications 1

I

* Android system implements the principle of least privilege

* An app, by default, has access only to the components that it requires to do
its work and no more.

* An app cannot access parts of the system for which it is not given permission.

* Android allows mechanisms for an app to share data with other apps
and for an app to access system services

L]

Android system implements what we call as the principle of least privilege which
means that an application will have just as much privilege as it needs. That is an
application by default can access only the components that it requires to do its
work and nothing more. So an app cannot access parts of the system for which it

is not given permission.

This ensures that an application maliciously or non maliciously do not affect the
system at large. However with the principle of least privilege android also allows
mechanisms for an application to share data with other app and for an app to
access system services. As you may imagine this is very important and necessary
to develop wonderful applications for example if you want to develop an
application which access its camera that application must have some way to

communicate with the camera app.

(Refer Slide Time: 6:12)

/V‘rv PR [LS D Lirro A~ N\ mnrs

Applications - Resource Access I

* An app can request permission to access device data such as the
user's contacts, SMS messages, the mountable storage (SD card),
camera, Bluetooth, and more.

* The user has to explicitly grant these permissions.

* It's possible to arrange for two apps to share the same Linux user ID,
in which case they are able to access each other's files.

* To conserve system resources, apps with the same user ID can also
arrange to run in the same Linux process and share the same VM (the
apps must also be signed with the same certificate).

So an app can request permission to access device data whenever it wants. For
example user’s contacts, SMS messages, the mountable storage, camera,
Bluetooth and more. Android requires that the user explicitly grant these
permissions. You have already experienced that when you installed an app, and
the app asks your permission for example if you install an app such as PayTm

which many of us use for paying uhh which many of us use for paying bills.

It requires access to our SMS messages because sometimes it wants to access
SMS to authenticate itself and to validate its user. Similarly there are other
applications which require access to your contact list or to your camera or to your
GPS or any other system resource and every time an explicit permission from the

user is required at a time of the installation.

It is also possible in android that two apps share the same Linux user ID because
they can share the same Linux user ID they can access each other’s files. We will
learn more about it in later weeks when we have term then. We will learn about

later weeks, once we developed to our advanced programming environment.

We will learn more about it in later weeks, once we have developed our basic
understanding and would develop more advanced applications. Now to conserve
system resources, apps with the same user ID can also arrange to run in the same
Linux process and share the same VM. But these apps must then also signed with
the same certificate.

Don’t worry about these details, we will be discussing them much more in (det)
don’t worry about these details we will be discussing them in later chapters.
Don’t worry about details, don’t worry about these details we will be discussing

them in more detail in later.

(Refer Slide Time: 8:28)

nh

Aar CATARAR
APp Lomponent

o

w

* Four essential building blocks:
* Activities
* Services
* Content Providers
* Background Receivers

* Each component defines a point through which the system can enter
your app.

Now, let us look at app components. An android application (th) now let us look
at app components. There are essentially four building blocks for any android
application. An android application may have either one of them or two of them

or three of them or all four of them.

You have already experienced one of it. It’s called activities. The other building
blocks are services, content providers and background receivers. Each of these

components defines a point through which the system can enter your application.

(Refer Slide Time: 9:12)

App Component [lp
* Activity

* An activity represents a single screen with a user interface.

* An activity is implemented as a subclass of Activity

* Services

* A service is a component that runs in the background to perform long-running
operations or to perform work for remote processes.

* A service does not provide a user interface.

* Another component, such as an activity, can start the service and let it run or
bind to it in order to interact with it.

* Aservice is implemented as a subclass of Service

Activity. As you already have seen activity represents a single screen with a user
interface. An activity is implemented as a subclass of Activity class. For example
if you have an email app then there may be an activity that shows you the list of
emails. Another activity to compose an email. And another activity for reading

email. So the single email app may consist of three activities.

Currently in our math quiz application, we are only using one activity but very
soon we will move to implement more activities into same applications. And all
though the activities work together uhh and all though the activities work together
(prohide). And all though the activities work together provide an osc experience

to the user.

They are independent of others. Uhh and as such a different application can start
any one of the activities. If the parent applications allows and as such a different
application can start any one of the activity of another application as long as it is
provided by the permissions. For example a camera app can start the activity in

the email app that composes new email in order a user to share a picture.

You may have experienced some of these when you open your Whatsapp or your
Facebook application and you want to share something. An activity is also
implemented. An activity is implemented as a subclass of activity and as you
have already developed one activity in your program we will be learning more

about activities later on.

The another building block is one has called a service. A service is a component
that runs in the background to perform long running operations or to perform
work for remote processes. A service does not provide a user interface. Let us
take some example of services. One of the example could be a service that
downloads data and the background as you may imagine (down) as you may
imagine downloading data and the background does not fully require a user

interface.

Another example is a service that plays music in the background while the user is
in a different app. So there could be various services that you can implement
which work in the background. Another component such as an activity can start
the service and let it run or bind it to others in order to interact with it. A service
is implemented as a subclass of a service. Let’s look at the another app

component.

(Refer Slide Time: 12:46)

App Component [y

* Content providers
* A content provider manages a shared set of app data.

* You can store the data in the file system, an SQLite database, on the web, or
any other persistent storage location your app can access.

* Through the content provider, other apps can query or even modify the data
(if the content provider allows it).

* You may use Content providers for reading and writing data that is private to
your app and not shared.

* A content provider is implemented as a subclass of ContentProvider and must
implement a standard set of APIs that enable other apps to perform
transactions.

Content providers. A content provider manages a shared set of app data. As you
can imagine from the name that it is providing some content. Now you can store
this data in the file system. In a (sik in @) Now you can store this data in a file
system an SQL.ite database, on the web or any other persistent storage location
your app can access.

And through the content provider other apps can query or even modify the data as
long as the content provider allows it. You may also use content providers for
reading and writing data that is private to your app and not shared.

That is a content provider can be used both for saving private data and also the
data that you may wish to share others. Content provider is implemented as a
subclass of content provider and it must implement a standard set of API’s that

enable other apps to perform transactions.

(Refer Slide Time: 13:57)

App Component 1lly

* Broadcast receiver

* Itis a component that responds to system-wide broadcast announcements.

* E.g. a broadcast announcing that the screen has turned off, the battery is low, or a
picture was captured.

* Apps can also initiate broadcasts

* E.g. tolet other apps know that some data has been downloaded to the device and is
available for them to use.

* Broadcast receivers may create a status bar notification to alert the user when
a broadcast event occurs.
* A broadcast receiver is just a "gateway" to other components and is intended
to do a very minimal amount of work.
* E.g. initiate a service to perform some work based on the event.

* A broadcast receiver is implemented as a subclass of
BroadcastReceiver and each broadcast is delivered as an intent.

L S

The fourth component is the broadcast receiver. Broadcast receiver is a
component that responds to system wide broadcast announcements. For example
a broadcast announcing that the screen has turned off, or that the battery is now
low sometimes you may have seen a notification says battery is low 15% or

battery is low 3% please plug in your phone.

So these are the kind of broadcast that we are talking about it. An app can also
initiate broadcasts so for example an app may want to broadcast that has
downloaded the data that you wanted to download. The broadcast receiver may
create a status bar notification they do not really need a screen. But status bar
notification is very common for broadcast receiver to implement so that they can

alert the user when the correspondent broadcast event has occurred.

A broadcast receiver is just a gateway to other components and is intended to do a

minimal amount of work. Broadcast receiver is implemented as a subclass of

broadcast receiver and each broadcast is delivered as an intact. So far we have not

covered intent in our lectures neither our application has any intent building.

As of now you can understand intent as only a message object. That is it is a
message which is delivered to get some action done. We will learn more about

intent in our later classes.

(Refer Slide Time: 15:38)

App Component [y

* Any app can start another app’s component
* E.g. your app may use camera app to capture a photo

* When the system starts a component, it starts the process for that app (if it's not
already running) and instantiates the classes needed for the component.

* if your app starts an activity in another app, that activity runs in the process that
belongs to the another app, and not in your app's process.

* Therefore, Android apps don't have a single entry point (there's no main()
function, for example)

* The system runs each app in a separate process with file permissions that restrict
access to other apps
* An app cannot directly activate a component from another app

* To activate a component in another app, you must deliver a message to the system t|
specifies your intent to start a particular component

* The system then activates the component for you.

A

Now the beauty of android lies in that in any app can start another apps
component. Just as | give previous example your app may want to use the camera
app to capture a photo. And when the system starts a component it is starts the
process for that app if it is not running. And instantiates the classes needed for the

component.

If your app starts an activity in another app and that activity runs in the process
that belongs to another app and not in your app’s process. Let’s go through these
points again. Suppose you want to run your application and your application has a
component let’s take activity. The moment you want to start this activity there

will be a corresponding process for your app.

And all the classes needed for this component activity will be instantiated. Now
this activity wants to initiate another activity in another app. Now the new
activity will run in the process that belongs to the another app and not your

process. Because essentially you are running an activity of an another application.

Due to this feature android apps do not have a single entry point. As you may
have may imagine as you may imagine an apps component can be instantiated by
any other app so there is not a single entry point. A camera app may have many
components and these components may be initiated in a different order by

different apps.

And this is also the reason why there is no main function in an android program.
Some of you already have noticed that they could not find the main function.
Others may have not looked closely. But now you can look for this and you will
not find the main function. Because the main function essentially implies that

that’s where the execution starts.

This is not true for the android application. An android application may start
whenever any component is initialized. As told earlier the system runs each app
in a separate process with permission that restricts access to other app. So an app
cannot directly activate a component from another app. But what it does is that it
makes a request to the system. And when it makes a request to the system, the

system activates that component for the app.

(Refer Slide Time: 18:36)

ntant O Arkivintines C amnanandt IEs
Intent & Activating Components Ly

* Activity, Services, and Broadcast receivers—are activated by an
asynchronous message called an intent.
* For activities and services, an intent defines the action to perform
* For broadcast receivers, the intent simply defines the announcement being
broadcast
* Content provider, is not activated by intents. It is activated when
targeted by a request from a ContentResolver

Let us learn a little bit more about intent and activity components. Activity,
services and broadcast receivers these three components are activated by an

asynchronous message which we called an intent. Like I told you earlier intent is

more like a message object. For activity and services an intent defines the action

to perform.

While for broadcast receivers, the intent defines the announcements being
broadcast. For the fourth component the content provider it is not activated by
intents. It is activated when targeted by a request from a content resolver. We will

read more about it in later lectures.

(Refer Slide Time: 19:32)

Intent & Activatint

Components [y

(D]

C

<

* Intents bind individual components to each other at runtime,
whether the component belongs to your app or another.

* Anintent is created with an Intent object, which defines a message to
activate either a specific component or a specific type of
component—an intent can be either explicit or implicit, respectively.

!

So in intent bind individual components to each other at runtime, whether the
component belongs to your app or another. These are like the messenger which
goes from one component to another component. You create an intent in your
program with an intent object. An intent object defines a message to activate

either a specific component or a specific type of component.

In android we can define both implicit and explicit intents. Do not worry too
much we will soon be implementing intents in our program and then you can
come back to these lectures and make more sense of what we have learnt. And

there will also be more details in later chapters about intents.

(Refer Slide Time: 20:28)

The Manifest File D

* Declares all the components of the app
* Used by Android System to know what components exist in an app

* |dentifies any user permissions the app requires, such as Internet access or
read-access to the user's contacts.

* Declares the minimum API Level required by the app, based on which APIs
the app uses.

* Declares hardware and software features used or required by the app, such
as a camera, bluetooth services, or a multitouch screen.

* Declares API libraries the app needs to be linked against (other than the
Android framework APIs), such as the Google Maps library.

* https://developer.android.com/guide/topics/manifest/manifest-intr

Now the last topic of this lecture the manifest file. We have already see the
manifest file in project. The manifest file declares all the components of the app.
It is used by the android system to know what components exist in an app.

Manifest file identifies the user permissions that app requires.

For example X is to (())(20:55) or to use user’s contacCt or to use user’s SMS
services, camera app, GPS etc etc. The manifest file also declares minimum API
level required by the app. And it also declares hardware and software features
used or required by the app, it also declares API libraries that a app needs to be
linked against, such as if you are using Google maps library. A very good detail
instruction of a manifest of manifest file is available at this link. Let’s click it and

try to see.

(Refer Slide Time: 21:42)

AopManiest | Andod X+ - 0 X
O 8 grnestonppmatmats oot X =% 0 -

WD G Gt | Pk memcos s G M WSOmpy % b | Resen 7 gy S Swcmswis.) SopgeredSims 5% WebSkeGoley 7 NobleCompring - % Ieodecin

= * Developers

DESIGN DEVELOP DISTRIBUTE

& APIGuides Develop » API Guides

App Manifest

Every application must have an AndroidManifest xml file (with precisely that name) in ts root
directory. The manifest file presents essential information about your app to the Android In this document
system, information the system must have before it can run any of the app's code. Among
other things, the manifest does the following:

* It narmes the Java package for the application. The package rame servs s a uriqueidenifiesfor the
application

+ It describes the components of the apphication - the actiibes, senvices, broadcast recemers, and
that th Rnames hof the) Libraries

‘components and publishes their capabities(for example, which Itent messages they can handie).
ystem kno a0 under what condions

they can be launched.

* Itdect = plication 10access. f the AP with other applications.

Mesact with the ap

* Iliststhe Tnstromentation classes that g 9 present
manifestonly whie is and ested:they elore poblished.

nrsduction
A Components
App Resourses.

205 Mt
<t

ity
actiyalas
aappicaion.
<eesory
ccompatleserees>
<

<t pemisions
<rstumentzsons
ot

You can see this the same link which | had given. It defines app manifest. As you
can see that this is the same link that | had given if you click on it this page
below. Let’s go through it to understand the manifest file. So every android
application must have a manifest file. Every android application must have a

manifest file and that manifest file must be name androidmanifest.xml.

This name is precise that is you cannot change it. The manifest file uses all the
essential information about your application that the android system requires. It
needs the JAVA package describes the components of the application determines
which processes will goes to application components declares permission etc etc.

Now let us look at the structure of manifest file.

(Refer Slide Time: 22:53)

 hopMmtet g X |+ -0 x

wih=Bi0

> DEVELOPERCONSOLE

\ Each element, along with all of its attributes,
B T inthe aiphabetical
ntrodocion v

<ol versice="1.0" encoding="utf-&"?>
aunifests

<wses-permission />
<permission />
4

ree />

<permissicn-group />

<instrumentation />

<uses-sdk />

cwses-configuration /> b
<uses-feature />

<supprts-screens />

<conpatible-screens />

<supports-gl-textare />

<opplication

activity
<intent-filter>
<action />
<category >
<data />
</intent-filter>
<meta-dats />
dJactivity

As you can see that the manifest start. As you can see that manifest file starts
from the manifest tag and then it goes into user formations. User SDK
configuration, features etc etc. And then it comes to application. Let us try to see

what these fields are I will also open our program that we have developed.

(Refer Slide Time: 23:22)

] - 6 x
B You Moigee (e Sahye Moow 84 Mo b VG5 Hedew itp

DHO ¢2 X0 QR ¢% Hm- P 0nAGE #8 TLa# 7 Ql
6 ek -

g G G4 0| Sxsaenit @ T cloncpey | B <Jaschupng 1| @ Kfambageg ¥ | 8 toagant | @ cobsnt x|

= ' e ey compcesnt & eaty 3 i oo 73 e 198 Ao Syen
manifest L

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="psingh.iiitd.ac.in.mathquiz">

<application
am ® 1o

am B vdyouloow?
an

t.action.MAIN" />

ent. category. LAUNCEER" />
et o

oL

e H & Bte | sow oyt picon [

" Inifiaizing ADB

. - 8 X
B iR Yoo tigee (ke Smbye ehow B4 e Tk G5 Hodoo o
DHO ¢4 X0F QAR ¢» KiEm- P onRGE ¥E8 ILa# 7 Q
oMt
G4 8- 1| B ohayqeini ¢ B detetetotom * | @ clnadmym ¥ | B clnechepey * | @ clombegng x| @ diaguond x| @ cobrard ¢ Iy
> Dyee | manifest Ll]
2 23: <7ml version="1.0" encoding="utf-8"2> 1
i 2 g: <manifest xmlns:android="http://schemas.android.com/apk/res/android"
5; v ox package="psingh.iiitd.ac.in.mathquiz">
» Dndedie
7 Bain
v Oj
i £y <applicatich
L &% Canteniy android:allowBackup="true"
: G;_.. L] android:icon="¢mipnap/ic_launcher"
" Byt id: & iz®
oy android: label="MathQuiz'
T Blopruphis android:supportsRtl="true"
N Ll android: thene="gstyle/AppThene™>
v Rihegiit <activity android:name=".QuizActivity">
B clrncregey
» Dimprapotes <intent-filter>
: 2 P <action android:name="android.intent.action.MAIN" />
> Duiveatiity
B avdlanditnt
- <category android:name="android.intent.category.LAUNCEER" />
arrn </intent-filter>
i L
(e I | |
:-\n-n'!.-.f [[& Bhve [oen :{
B temas
W AgpMntest[Adod X+ =IO
& 3 0 |8 seuyenstonyitenpmmtsmnts s X =%6 -

D G Gt | Pk st G Mk MSOmpy ok Podm | eyt sowgy—A o Swmwswies. Jf SopperedSin % WebSkeGoy % MobleCompaing - % Iecdecin-

3
[] DEEES DESIGN DEVELOP DISTRIBUTE > DEVELOPER CONSOLE

<Pxal version="1.9" encoding="utf-8"2>
<manifesty

<uses-permission />

ssion />
ﬁ:ﬁmwm I
<peraission-group />
cinstrusentation />
<uses-sdk />
<uses-configuration />
<uses-feature />
<supports.-sereens />
<compatible-screens />
<supports-gl-texture />

<application
<activity
cintent-filter
<action />
<category />
«data />
</intent-filter>
" <meta-data />
— <Jactivity
R ey activity-alias
= " - yourp dispiay options.
 hpMmit bt X [+ -0 x
& 5 0 |8 suvensmsongidmpamammis st X =20 -

R G Clede |0 immosns G WSk WS0mgg e e & sdey-h o Socrmmwis. & SggemdSn % WebSkedoey ¢ MobleComprig % eciucn.

3
[| Developers DESIGN DEVELOP DISTRIBUTE) DEVELOPER CONSOLE

anst
<uses-sdk />
<wses-configuration />
<uses-feature />
<supports-screens />
Introduction v <compatible-screens />
<supports-gl-texture />

& API Guides

<application>

<activity>
<intent-filter>
<action />
<category />
«data />
</intent-filter> n
<meta-data />
<Jactivity

<activity-aliss>
cintent-filters . . . ¢/intent-filters
<meta-data />

<Jactivity-alias>

<service>
cintent-filters . . . ¢/intent-filter>
<neta-data/>

</servicey

<receivery

your pr display options.

 fopManitAriod X+ -0 x
O |8 dosiremtnitcomputatncimsinimtes st ¥ =206 -

D G Cltr || P ok imemens i G M MSOmpy o Pl | eyt sowgy—A o Swmwswies. % SoppemedSin % WebSkeGoy % MoskeCompaing - % Iecdecin-

=
‘I Developers DESIGN DEVELOP DISTRIBUTE }» DEVELOPER CONSOLE

<action />
& APIGuides caategory />
«data />
</intent-filter>
<meta-data />
<Jactivity

App Components Y <activity-alias>
cintent-filters . . . </intent-filter>
5 <meta-data />
<Jactivity-aliasy

- <service>
cintent-filters . . . Bintent-filters
<neta-data/>
</service>

<receivery
cintent-filter . . . ¢/intent-filter>
<meta-data />

</receivery

App Resources.
Ao Manifest
acton
actiity
<acthity-alias>
<application>
i <providers

<grant-uri-peraission />
<compatible-screens> AL

<path-permission />
< </provider>
<grantasipermission>

<uses-library />

your site-specific ispiay options.

Vst o o o et e ety

& sephlomiet ko X |5 - 8 x
e —— * =KMo -

R0 G Gt | (P % el G Mo WSOy % Pedm | e S sdoar—A o Swcwsnier- o SepgetedSies 1 WebSke ey % Mok Compaing- % Itdecicn

-3
‘l Developers DESIGN DEVELOP DISTRIBUTE) DEVELOPER CONSOLE

<mata-dtaf>
& APIGuides </services
5 <receiver>
Introdsesi [<intent-filter> . . . </intent-filter>
N meta-data >
¢/receivery
App Components.
<provider>
<grant-uri-peraission />
<meta-data />
- <path-peraission />
l <fpraiﬂm

cuses-library />
<Sapplications
</manfest>

Allthe elements tht can appear inthe manifest fl are isted below in alphabetical order, These are the only legal elements; you cannot add your own
elements or attributes.

<application

Thie eita niese Annbis i i "
= z e cita nese annbiag 10 store your preferences for site-specific lanquage and display aptions.

This is our manifest file. As it is given here. Without having anything on top we
don’t have anything on top except the package given. Then we have the
application. Inside the application some fields are given. We will try to

understand them. But let’s go back to the original structure of the manifest file.

A manifest file starts with following fields. User permissions, SDK,
configurations, support system etc. Then it comes to application components,
activity, services, broadcast receivers and content providers. If you click on any
of these fields you will get the detailed value of that.

(Refer Slide Time: 24:34)

[0
N
e la

£ pemimoriee [0 X |+

O | S — %

RD G Glede | s G Sk WSOmpg e e sdey-A f Socmmes. g % WebSkedoley ¢ MovleCompi ¢ et

3
Ijg) Developers DESIGN DEVELOP DISTRIBUTE Q search > DEVELOPER CONSOLE

Develop > API Guides

= | <permission-tree>

Aop Companents v
App Resources v SYNTAY:
Aop Manifest v

<permission-tree android: icon="drawble resource™
User litace v android: 1abel="string resource” |
android:name"string” />

Avimatooand Gaaphics

k
Camputstion v CONTAINED IN:
Mot et v ceanifests
Locaton and Sensors v DESCRIPTION:
‘Connectivity - for atree of permissions, hip in the tree.
ing . ission(). ithi periods ('.). For
Textand | v
e 1 ject. b
Duta Starage 2

con.example. project. taxes CALCULATE
fres S con.cxample. project. taxes. dedctions WKE_SONE_UP

v rom ovsmnls nendart tavee dadurtinne PYMCGERATE

 fgpMoniet Aod X+ =
£ 9 O |8 tesememtonyenpam s s % =20 -

HEO) G Ot ||k lemadcesiowms § Ml MSOmpiy 3t b | R adepy—A Y St % SoppemdSas 3% WebSkeeoley 1 Moble Compaing - 5% Iecdecion-

x
l'l Developers DESIGN DEVELOP DISTRIBUTE

the manifest
full i file. To view element, ci in the alphabetical
list of elements that follows the diagram, or on any other mention of the element name.

<?xal version="1.0" encoding="utf-8"?>
<manifest>

<wuses-pernission />
<pernission />
<peraitlion-tree />
<pernission-group />
cinstrusentation />
cuses-sdk />
<wses-configuration />
<uses-feature />
<supports-screens />
<compatible-screens />
<supports-gl-texture />

<application>

<activitys
<intent-filter>
<action />
<category />
«data />
</intent-filter>

T it sedC X | -0
S O [e — Xl =28 -

D G Gt Pk lemeosioms G % MEOmpm kel ey % sewpy—d ¥ Semeswies. J SopperedSin % WebSkrGoky % MobleCompairg - % Iecdecin:-

=
iy Developers DESIGN DEVELOP DISTRIBUTE] DEVELOPER CONSOLE
< APIGU Develop » API Guides

— © <uses-sdk>

App Companents v
App Resources v SINTAX:
Ao Manfest e In this document

<uses-sdk android:minSdkVers: integer” > Whatis APl Level?
User Interface. v android: targetSdiversion="integer" b 3 Uses of AP1 Level in Android

android:naxSdversion="integer" />
3 Development Considerations
> Application forward

Animation and Graphics v

Computation v CONTAINED IN: compatibiity
3 Application backward
Media nd Camera v caanifost> compatibilty
) Selecting a platform version
Locationand Sensors 7 DESCRIPTION: and AP Level
> Declaring a minimum API
e - X i ions of the Androi by Level
means of an API Level integer. The APIL i par 2 3 Test
Textand Inpet v Levels
Levelof agi i which may i id devk
s . 3 Filtering the Ref
Despite its name, this element is used to specify the API Level, not the versi ‘of the SDK

brades. v Kit) or. % The AP i i . You cannot
v Asrva tha 4011 E : i varei e nn tha cama

st | odl X |+ -0 x
€ >018

A0 G Cledr || P immateesund § M MSOmguey Rl | R ¥ sdergy-d Y S 3t SoppemdSirs % WebSkeGoley 7t Moble Compuing - 3% Ieveducicn

it e

I
L] Developers DESIGN DEVELOP DISTRIBUTE }» DEVELOPER CONSOLE

€ APIGuides
SYNTAX:

Inthis document
roviden cuses-stk ammn:mmniw'ing:«' 3 Whatis API Level?
android: targetSdkVersionsinteger™
aeceinen android:naxsddersions"integer" /> 3 Uses of API Level in Android
> Development Considerations
<senvice> 3 Application forward
CONTAINED IN: compatibilty
<supports-ghtexture> Application backward
aanifest> compatbilty
R 3 Selecting a platform version
DESCRIPTION: and AP Level
<uses-configration> 3 Declaring 2 minimum APt
¥ pa the by Level
means of an API Level integer. The APIL i il P APl) Testing against higher API
Levels
wsesbrry. Levelof 2 which may
i) Filtering the Reference
espermissions i this element pecify the APl Level, ot of the SOK Docurentalion by APl Level
Kit or Androi The API Level ingle integer. You camot
e derive the AP Level from it associated Android version number (for example, it s not the same
i as the major version or the sum of the major and minor versions).
Also read the document about Versioning Your Applications.
User nterace v
Thi oki TOS i piay O

So in your free time you may want to click on it and find out what it means. For
example user SDK must be main SDK version target as to (())(24:48) SDK
version . You have already seen some of these earlier when we were setting our

project.

(Refer Slide Time: 24:55)

AopMumiest | Andod X+ - 0 X
x =40 -

0 G Gt || P ok eemeosions G M MISOmpny % Podn || R 7 soowpy—A of Swmswes Y SopgenedSin % WebSkeGoky % MoeCompaing - % Ieodecin-

=
l‘l DEVE'OPEI‘S DESIGN DEVELOP DISTRIBUTE }» DEVELOPER CONSOLE

<supports-screens />
& APIGuides ::”"i:';’:xt’ s

<application

<activity
Aop Components ¥ cintent-filter>
<action />
v <category />
<data >
A <intent-filter>
<meta-data />
<Jactivity

<activity-alias>
<intent-filter> . . . </intent-filter>
<meta-data />

<Jactivity-alias>

service)
<intent-filter> . . . </intent-filter>
<meta-datal>

</service>

<receiver>
<intent-filtery . . . ¢/intent-filter>
<neta-data />

¢[receivery

FepMmt o X | - o x

B Xl =28 -

R0 G Gt | (P % immidesfomal G Mol WS Ompungy % Pode || o sdoar—A 1 Swcwemie- % SopgonedSies 1k WebSke ey % Mobde Compaing- 5% decin

=
[1 Developers DESIGN DEVELOP DISTRIBUTE]+ DEVELOPER CONSOLE

¢Jactivity-aliasy
€ APIGuides
services
cintent-filters . . . </intent-Filter>
<meta-data/>
«/service>

Agp Components Y. <receivers

<intent-filters . . . </intent-filters
AppResaurces: v <aeta-data [y
<Ireceivers 5
<providers
e <grant-uri-peraission />

<meta-data >
o <path-pernission />

<lprovider>

cuses-library >
</application

</manifest>

Allthe elements that can appear in the minifest file are listed below in alphabetical order, These are the only legal elements; you cannof

> elements or attributes.

This site uses cookies to store your preferences for site-specific language and display aptions. |
il

Whatever settings you did in your project come in a manifest file and your

manifest file is used by android to understand your application requirements.

(Refer Slide Time: 25:07)

The Manifest File 19}

* Declares all the components of the app
* Used by Android System to know what components exist in an app

* |dentifies any user permissions the app requires, such as Internet access or
read-access to the user's contacts.

* Declares the minimum API Level required by the app, based on which APIs
the app uses.

* Declares hardware and software features used or required by the app, such
as a camera, bluetooth services, or a multitouch screen.

* Declares API libraries the app needs to be linked against (other than the
Android framework APIs), such as the Google Maps library.

* https://developer.android.com/guide/topics/manifest/manifest-intro.h

That is it for today’s lecture. In this lecture we went through some more
fundamental knowledge of android application and we also went through the
manifest file and you also came to know that why android application is do not
have a main function. For this lecture I am using the reference of android API

guides which are available on developer.android.com. Thank you!

