Programming, Data Structure and Algorithms in Python
Prof. Madhavan Mukund
Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Week - 02
Lecture - 02
Strings

We have seen now that python uses names to remember values. Values are the actual
quantities that we manipulate in our program, these are stored in names. Values have

types, and essentially the type of a value determines what operations are allowed.

(Refer Slide Time: 00:02)

Names, values and types

» Values have types
» Determine what operations are allowed
» Names inherit type from currently assigned value
» Can assign values of different types to a name
« int, float, bool

® +;-,% /.. and,or,.. == l=5>

The types we have seen are the basic numeric types - int and float, and the logical type
bool which takes values true or false. So, for the numeric types, we have arithmetic
operations, we also have other operations which are more complicated. For the Boolean
types we have and, or, not, which allows us to manipulate true and false values. And then
we have these comparison operators equal to, greater than and so on, which allows us to
check the relative values of two different quantities, and decide whether they are in some

order with each other.

The important thing that we said was that in python the names themselves do not have a

fixed type. So, we cannot say that i is of type int or x is of type float, rather it depends on
what values assigned and in particular, if a name is used for the first time without
assigning a value then python will complain. We do not have to announce names in
advance like other programming languages, but whenever we first use a new name; its
first use must be in an assignment statement on the left hand side. So, before we use a

name in an expression on the right hand side it must be assigned a valid value.

(Refer Slide Time: 01:36)

Manipulating text

» Computation is a lot more than number crunching
» Text processing is increasingly important

* Document preparation

» Importing/exporting spreadsheet data

» Matching search queries to content

Numeric types by no means the only things that are of interest these days in computation.
A lot of the computation we do is actually dealing with text. So, whenever we prepare a
document, for example, using a word processor or some other things for presentation,
then we are actually manipulating text; so We are moving text around, searching for
something to replace and so on. Also when we are manipulating data itself, very often

data comes from multiple sources.

We might have tables of values which are typed in by somebody or generated by a device
and we have to import them in a spreadsheet. And then if we want to manipulate them by
using another program, we might want to export them from a spreadsheet this is typically
done using text files in which the columns of the spreadsheet are stored in a systematic

way separated by say commas. So, this also involves text processing.

And finally, most of us spend a fime using a computer actually working with the internet.
One of the most common things we do when we use the internet is to type queries and
look for matching documents or other resources on the internet. So, most of this search
query processing currently is done using text. It matches the text in the queries that we
give with some information about the documents also implicitly in text and decides
which documents are most relevant to our query. So, text processing is an important part
of computation in general. And the ease in which you can manipulate text in python is
one of the reasons why it has become a very popular language to program many things

including internet applications.

(Refer Slide Time: 03:18)

Strings —type str

» Type string, str, a sequence of characters
» A single character is a string of length 1
* No separate type char

* Enclose in quotes—single, double, even triple!
city = '"Chennai’
title "Hitchhiker's Guide to the Galaxy"

_ dialogue = '''He said his favourite book is
\"Hitchhikers Guide to the Galaxy='''

Python uses the type string for text, which internally is called str. So, we will use the
word string instead of str, because it is easier to say. So, a string is basically sequence of
characters. Unlike other programming languages, python does not have a specific
character type to distinguish a single character from a string of length 1. So, there is only
one type for text in python, which is string, and a single character is indistinguishable
from a string of length 1. So, there are not two types of things; it is not that we have
single characters and then string is a sequence of characters, a string is sequence of

symbols and one symbol is just a sequence of length 1.

The values of this type are written as we would normally do in English using quotes. We
use quotation marks to demarcate the beginning and at the end of a string when we want
to write down an explicit value. So, we can use any type of quote, so a single quote
would denote in this case the name city is assigned the string ‘Chennai’. Note that when
we write symbols like this capital C is different from small ¢ and so on. So, we have seen
exactly seen the symbols within these two quotes as the value assigned to the string to

the name city.

Now we can also use double quotes; and one reason to use double quotes is if you
actually need to use a single quote as part of the string. This is one way to do it; and the
other way to do it is actually to write a back slash. If you write a back slash and s quote
in the middle of the string, it means that this quote is to be taken as a symbol and not at
the end of the string, but a much simpler way to include special things like quotes inside
other quotes is to change the quotation. So, a single quote can include double quotes, and
the double quote can include single quote without any confusion. So, this says that the

name title is assigned a value “Hitchhiker’s Guide to the Galaxy”.

Now, what if you wanted to combine both double quotes and single quotes in a string?
So, python has a very convenient thing called a triple quote. So, you can open three
single quotes, and then you can write whatever you want with multiple double quotes
and single quotes. So, if you want to say ““He said his favorite book is within quotes
“Hitchhiker’s Guide to the Galaxy” *”. Then this value string has both double quotes
inside it and it also has a single quote inside it. So, we cannot enclose it in double quotes
and we cannot enclose it in single quotes, because either of them will be ambiguous
unless we use this back slash as | said before. So, if we do not want to use back slash,

you can use a triple quote.

(Refer Slide Time: 06:06)

Let see how this works in python interpreter. So, we can say s equal to ‘Chennai’ and
now been asked the value of this and we see that it is reported with single quote. If we
ask for the type of s, it says that s is class of str. So, this tells us that internally python
realizes that s is a string. If we say t is equal to say just the letter X, then the type of t is
also a string. So, there is no distinction between single character and multiple characters.
Now if we say let us just shorten it say title is equal to “Hitchhiker’s” then if you ask for
the value of title, it shows it to you with double quotes outside and a single quote outside.
So, this indicates that this is a single string and again the type of title is str.

And finally, if | say myquote is equal to and | use three quotes and I use
“Hitchhiker’s” *’. So, I have “Hitchhiker’s” in double quotes and Hitchhiker’s itself
contains a single quote. And | use triple quotes around it then my quote is correctly
shown. Now notice that when it displays my quote, it does not show triple quotes. It
includes puts another single quote outside and it shows this internal single quote has
been highlighted with the back slash. So, back slash single quote is python's way and
many programming languages’ way of saying that the next character should not be
treated as what it stands for, but as it is. So, just take the next single quote as a single

quote, do not treat as the end of the quotation.

The other thing that you can do with single quote is to actually write multiple lines. So, |
do this first line, and then second line, and then third line, and then close the quote then
my quote is shown as first line with back slash n. So, back slash again is a special
character which indicates a new line; then second line, then new line, and then third line.
We said before that python is very useful for manipulating text and one other thing that
you would like to do is actually read and say a paragraph of text or multiple lines of a
document and not have to worry about the fact that these are multiple lines just store it as
a text value as a string. This is very much possible in python you can embed multiple
lines of text into a single value.

(Refer Slide Time: 09:00)

Strings as sequences

» String: sequence or list of characters
» Positions 0,1,2,...,n-1 for a string of length n

7@ 1 2 3 4

e s = "hello" hlell|l|o

» Positions -1,-2,... count backwards from end

As we said the string is a sequence or a list of characters. So, how do we get to individual
characters in this list? Well, these characters have positions and in python positions in a
string start with 0. So, if | have n characters in a string, the positions are named 0 to n
minus 1. So, supposing we have a string hello, it has 5 characters. So, the positions in the

string will be called 0, 1, 2, 3 and 4; so this is how we label positions.

And another convenience in python is that we can actually label it backwards. We can
say that this is position minus 1; very often you want to say take the last character of a
string and do something. So, instead of having to remember the length and then go to the

end, it is convenient to say take the last character. So, take the minus 1th character. So,
we actually saw this and we did the gcd, we talked about the last element of the list say
the list of common characters, and we said the minus 1th element n the list is the last

element.

This numbering scheme that we use for list informally in the gcd example without
formally explaining, it is actually the same numbering scheme that is used for positions
in the string. We have minus 1, minus 2, minus 3, minus 4, minus 5, so the important
thing to remember is that going forward, you start at 0, and coming backward you start at
minus 1, pecause obviously, minus 0 is same as 0. So, if we use minus 0 for the right
most thing there would be terrible confusion as to whether we are talking about the first
value or the last value. So, the forward position start from O from the beginning and the

reverse position start from minus 1 from the last element.

(Refer Slide Time: 10:37)

Strings as sequences

» String: sequence or list of characters

* Positions 0,1,2,...,n-1 for a string of length n
(S N S

1

s = "hello" h(e) 1| Do
5 -4 -3 -2 -1
* Positions -1,-2,... count backwards from end

o s[1] == "e", s[-2] = "1"

Once we have this then we can see that we use this square bracket notation to extract
individual positions. So, s 1, so that is the character at position 1 is an e and if | walk

backwards then s minus 2 is an .

(Refer Slide Time: 10:59)

Operations on strings

* Combine two strings: concatenation, operator +
s = "hello"
ot =5+ ", there"

e £t isnow "hello, there"

One of the most basic things one can do with strings is to put them together; to combine
two values into a larger string and this is called concatenation; putting them one after the
other. And the operator that is used for this is plus. So, plus, we saw for numeric values
add them; for strings the same symbol plus does not @add strings; obviously, it does not
make Sense to add strings, but it juxtaposes them, puts them one after the other.

So, if we have a string hello as we did before, and we take this, and we take a new string
and we add it to s. Then we get a string t, whose value is the part that was In hello plus
the part that was added. So, plus is just the simple operator which takes two strings and

sticks them side by side.

(Refer Slide Time: 11:52)

Let us look at an example in the interpreter. Just to emphasize one point; supposing | said
s was hello and t was there, then s plus t would be the value hello there. Now notice that
there is no space. So, plus literally puts s followed by t, it does not introduce punctuation,
any separation, any space and this is as you would like it. If you want to put a comma or
a space you must do that, so if you say t instead of that was space there t is the string
consisting of blank space followed by there, now if | say s plus t, | get a space between

hello and there.

This is important to note that plus directly puts things together it does not add any
punctuation or any separation between the two values. So, it is as though you have one
new string which is composed of many old strings whose boundaries disappear

completely.

(Refer Slide Time: 12:47)

Operations on strings

» Combine two strings: concatenation, operator +
e s = "hello"
et =5+ " there"
 t isnow "hello, there"

* len(s) returns length of s

» Will see other functions to manipulate strings later

We can get length of the string using the function len. So, len(s) returns the length of s.
So, this is the number of characters. So, remember that if the number of characters is n
then the positions are 0 to n minus 1. So, the length of the string s here would be 5, the
length of the string t here would be 5 plus 7 — 12. There are many other interesting
functions that one can use to manipulate strings, you can search and replace things, you
can find the first occurrence of something and so on, and we will see some of these later
on, when we get into strings and text processing and reading data from files in more
details.

(Refer Slide Time: 13:26)

Extracting substrings

=

A slice is a “segment” of a string

A very common thing that we want to do with strings is to extract the part of a string. We
might want to extract the beginning, the first word and things like that. The most simple
way to do this in python is to take what is called a slice. Slice is a segment, a segment
means | take a long string which 1 can think of as a list of character and | want the

portion from some starting point to some ending point.

(Refer Slide Time: 13:55)

Extracting substrings

A slice is a “segment” of a string
¢S = "hell 10
—

. S[l:ﬂ is el 1™

This is what python calls a slice. So, if we say s is hello as before, then for a slice we
give this starting point and the ending point separated by colon. So, we use this square
bracket notation exactly as though we were extracting part of a string, but the part that

we are extracting is not the single position, but a range of positions from 1 to 4.

Now in python, we saw that we had this range function which we wrote last time, it said
things like, if I want the numbers from 1 to m, I must write 1 to m plus 1, because the
range function in python stops one position short of the last element of the range. So, in
the same way, a slice stops one position short of the last index in the slice. So, if | do this
then remember that hello has position 0, 1, 2, 3, 4, so the slice from 1 to 4 starts at 1 goes

to 2, goes to 3, but does not go to 4, so it is only from e to | - the second .

(Refer Slide Time: 14:59)

Extracting substrings

A slice is a “segment” of a string
e s = "hello"
* s[1:4] is “ell"
* s[i:j] startsat s[i] andends at s[j-1]
e s[:j] startsat s[0], so s[0:7]

* s[i:] ends at s[1en(s)-1], so s[i:len(s)]

In general, if | write s i colon j then it starts at s i and ends at s j minus 1. There are some
shortcuts which are easy to remember and use; very often you want to take the first n
characters in the string, then you could omit the 0, and just say start implicitly from 0, so
just leave it out, so just start say colon and j. So this will give us all position 0 1 up to j

minus 1. So, if | leave out first position, it is implicitly starting from 0.

Similarly, if 1 leave out the last position it runs t@ the end of the string. So, if 1 want

everything from i onwards then | can say s i colon and this will go up to the position
length of s minus 1, but if | write explicitly as a slice, | will only write length of s. So,
essentially this IS the main reason that python has this convention that whenever | write
something like a range of 1 to m plus 1 then I have this extra plus 1 here. So, the main

reason for this plus 1 here is to avoid having to write minus 1.

If 1 had to include the last character and if | start numbering at 0, then every time |
wanted to go to the end of the string | would have to say length of s minus 1. It is much
more convenient to just say length of s, and implicitly assume that it knows that it should
not go to length of s, but length of s minus 1. So, this whole confusion if you would like
to call that in python about that fact that all Fanges end one short of the right hand side of
the range, stems from the fact that you very often want to run from something to the
length of it in a list or a sequence or a string and when you say that you do not want have

keep remembering to say minus 1.

(Refer Slide Time: 16:45)

Let us play with the second in the python interpreter. So, if | say s is equal to hello then
we saw that if 1 do 1 to 4, | get 'ell'. If I say colon 3 then I get 'hel' thatis O 1 2. If | say 2
colon, 1 get 'llo" that is 2 3 4. What if | say 3 2 1, so this says: start at position 3 and go up

to position 1 minus 1 which is 0. So, python does not give you an error, it takes all these

invalid ranges, anything where for example, the starting point to the ending point does

not define a valid range, and it says this is the empty string.

On the other hand, if I say something like go from 0 to 7, where there is no 7th position
in the string, here python will not give an error instead, it will just go up to the last
position which actually exists in the string below 7. So, in general these range values are
treated in a sensible way, if you give values which do not make sense. As far as possible

python tries to do something sensible with the slice definition.

(Refer Slide Time: 17:57)

Modifying strings

* Cannot update a string “in place”

es = "hel Lb" , want to change to "help!"

T

Though we have access to individual positions or individual slices or sequences within a
string, we cannot take a part of a string and change it as it stands. So, we cannot update a
string in place. Suppose, we want to take our string “hello” and change it to the string
“help!” it would be nice if we could take the third and the fourth position. So, remember
0,1,2,3,4,5500,1, 2, 3,4, so it would be nice if we could say make this into a p and

make this into an exclamation mark, so that I could get help instead of hello.

(Refer Slide Time: 18:36)

Modifying strings

* Cannot update a string “in place”
"hello", wantto changeto "help!"

' — error!

We would want to write something like change s 3, assign the value s 3 to be the string p.
Now, unfortunately python does not allow this. So, you cannot update a string in place

by changing its part. In fact, if you try this, you will actually get an error message, let us
see.

(Refer Slide Time: 18:54)

Here we have the string hello defined in four, and if I now try to say s 3 is equal to p,
then it says this does not support item assignment, which is what we are trying to say you

cannot change parts of a string as it stands.

(Refer Slide Time: 19:12)

Modifying strings

« Cannot update a string “in place”
* s = "hello", wanttochangeto "help!"
* s[3] = "p" — error!

* Instead, use slices and concatenation
s = s[0:3] + "p!"

» Strings are immutable values (more later)

Instead of doing this, instead of trying to take a string and change the part of it as its
stands what you need to do is actually construct a new string effectively using the notion
of slices and concatenation. Here what we want to do is we want to take the first part of
the string as it is. These are the first three characters, and then we want to change this to
p exclamation mark. So, what we can say is update s by taking 0, 1, 2 which is slice 0 to
3 and concatenating it with the new string p exclamation mark. So, this is how you
modify strings in python, but important thing is this is a new s we are not claiming that

this s is same as old s.

There we build a new string from the old string and perhaps store it back in the same
name, It IS partly like when we say j is equal to j plus 5, we are actually saying that we

have created a new value for j and stored it back in j.

Here again we are creating a new string and putting it back, but we are not modifying it.

Now this distinction between modifying and creating a new value may not seem very

important at this moment, but it will become important as we go along. So, strings are
what are called immutable values, you cannot change them without actually creating a
fresh value; whereas, lists as we will see which are more general type of sequence can be
changed in place you can take one part of a list and then replace it by something else. So,
we will see more about this later, this is a fairly important concept. Remember for now

that strings cannot be changed in place.

(Refer Slide Time: 20:42)

Summary

» Text values — type str, sequence of characters
» Single character is string of length 1

» Extract individual characters by position

Slices extract substrings
* + glues strings together

» Cannot update strings directly — immutable

To summarize what we have seen is that text values are important for computation, and
python has the types - string or str, which is a sequence of characters to denote text
values. And there is no distinction for @ separate type for a single character; there is no

single character type in python, a single character I just a string of a length 1.

We can extract individual characters by index positions, we can use slices to extract sub
strings, and we can glue strings together using the concatenation operator plus, but
strings are immutable. We cannot take a value assigned to a string name and update it in
place. We can create a new value by manipulating it using slices and concatenation, but

we cannot directly update it, because strings are immutable.

