

Programming, Data Structures and Algorithms in Python

Prof. Madhavan Mukund

Department of Computer Science and Engineering

Indian Institute of Technology, Madras

Week - 02

Lecture - 01

Assignment statement, Basic types – int, float, bool

Last week, we were introduced to notation of algorithms using the gcd example. We also

saw informally some python code, which we could understand but we have not actually

been introduced to formal python syntax. Let us start with some real python step.

(Refer Slide Time: 00:17)

A typical python program would be written like this, we have a bunch of function

definitions followed by a bunch of statements to be executed. So remember that we said

python is typically interpreted, so an interpreter is a program, which will read python

code and execute it from top to bottom. So, the interpreter always starts at the beginning

of you of python code and reads from top to bottom.

Now, function definition is a kind of statement, but it does not actually result in anything

happening, the python interpreter merely digests the function kind of remembers the

function definition. So that later on if an actual statement refers to this function it knows

what to do. In this kind of organization the execution would actually start with the

statement which is called statement 1. So, first you will digest k functions and then start

executing 1, 2, 3, 4 up to statement n.

(Refer Slide Time: 01: 09)

Now there is no reason to do this. So, python actually allows you to freely mix function

definitions and statements, and in fact, function definitions are also statements of a kind

its just they do not result in something immediately happening, but rather in the function

been remembered.

But one of things that python would insist is that if a function is used in a statement that

has to be executed that function should have been defined already; either it must be a

built in function or its definition must be provided. So, it may use this kind of jumbled up

order, we have to be careful that functions are defined before they are used. Also

jumbling up the order of statements and function definitions in this way, makes it much

harder to read the program and understand what it is doing. Though it is not required by

python as such as, it strongly recommended that all function definition should be put at

the top of the program and all the statements that form the main part of the code should

follow later.

(Refer Slide Time: 02:07)

What is a statement ? The most basic statement in python is to assign a value to a name.

So, we see examples and we have seen examples and here are some examples. So, in the

first statement i is a name and it is assigned a value 5; in the second statement, j is a

different name and it is assigned an expression 2 times i. So, in this expression, the value

of i will be substituted for the expression i here. So, if i have not already been assigned a

value before, python would not know what to substitute for i and it would be flagged as

an error.

When you use a name of the right hand side as part of an expression, you must make sure

that it already has a valid value. And as we saw, you can also have statements which

merely update a value. So, when we say j is equal to j plus 5 it is not a mathematical

statement, where the value of j is equal to the value of j plus 5. But rather that the old

value of j which is on the right hand side is updated by adding 5 to it and then it gets

replaced as a new value j. This is an assignment statement, this equality assigns the value

computed form the right hand side given the current values of all the names if the name

given on the left hand side, with the same name can appear on both sides.

The left hand side is a name and the right hand side in general is an expression. And in

the expression, you can do things which are legal, given the types of values in the

expression. So, values have types; if you have numbers, you can perform arithmetic

operations; if you have some others things, you can perform other operations. So, what

operations are allowed depend on the values and this is given technically the name type.

So, when we said type of values it is really specifying what kinds of operations are

legally available on that class of values.

(Refer Slide Time: 04:01)

So the most basic type of value that one can think of are numbers. Now in python and in

most programming languages numbers come in two distinct flavours as you can call

them integers and numbers which have fractional parts. So, in python these two types are

called int and float. So, int refers to numbers, which have no decimal part, which have no

fractional part. So, these are whole numbers they could be negative. So, these are some

examples of values of type int. On the other hand, if we have fractional parts then these

are values of type float.

(Refer Slide Time: 04:43)

Normally in mathematics we can think of integers as being a special class of say real

numbers. So, real numbers are arbitrary numbers with fractional parts integers are those

real numbers which have no fractional. But in a programming language there is a real

distinction between these two and that is, because of the way that these numbers are

stored. So, when python has to remember values it has to represent this value in some

internal form and this has to take a finite amount of space.

If you are writing down, say a manual addition sum you will write it down on a sheet of

paper and depending on a sheet of paper and the size of your handwriting there is a

physical limit to how large a number you can add on that given sheet of paper. In the

same way any programming language, will fix in advance some size of how many digits

it uses to store numbers and in particular as you know almost all programming languages

will internally use a binary representation. So, we can assume that every number whether

an integer or real number is stored as a finite sequence of zeroes and ones which

represents its value.

Now, if this happens to be an integer you can just treat that binary sequence as a binary

number as you would have learnt in school. So, the digits represent powers of 2, usually

there will be one extra binary digit 0 or 1 indicate whether it is plus or minus and they

may be other more efficient ways of representing negative numbers, but in particular you

can assume that integers are basically binary numbers.

They are just written as integers in binary notation. Now when we come to non integers

then we have two issues one is we have to remember the value which is the number of

digits which make up the fractional part and then we have to remember the scale. So,

think of a number in scientific notation right, so, your normally have two parts when we

use things in physics and chemistry for instance, we have the value itself that is what are

the components of the value and we have how we must shift it with respect to the

decimal point. So, this says move the decimal point 24 digits to the right.

So, this first part is called the mantissa right and this is called the exponent. So, when we

have the number in memory if it is an int, then the entire string is just considered to be

one value where as if we have block of digits which represents a float. Then we have

some part of it, which is the mantissa, and the other part, which is the exponent.

The same sequence of binary digits if we think of it as an int has a different value and if

we think of it as a float has a different value. So, why float you might ask. Float is an old

term for computer science for floating point; it refers to the fact that this decimal point is

not fixed. So, an integer can be thought of as a fixed decimal point at the end of the

integer a floating point number is really a number where the decimal point can vary and

how much it varies depends on the exponent. So there are basically fundamental

differences in the way you represent integers and floating point numbers inside a

computer and therefore, one has to be careful to distinguish between the two. So, what

can we do with numbers?

(Refer Slide Time: 07:59)

Well we have the normal arithmetic operations plus, minus, multiplication, which has a

symbol star modern x and division, which has a symbol slash. Now notice that for the

first three operations it is very clear if I have 2 ints and I multiply them or add them or

subtract them I get an int. But I have 2 floats I will get a float, division, on the other hand

will always produce a float if i say 7 and divided by 2 , for instance where both are ints I

will get an answer 3 point 5.

Now in general python will allow you to mix ints and floats, so i can write 8 plus 2 point

6 even though the left is an int and right is a float and it will correctly give me 10 point 6.

In that sense python respects the fact that floats are a generalized form of int. So, we can

always think of an int as being a float with a point 0 at the end. So, we can sort of

upgrade an int to a float if you want to think of it that way and incorporate with an

expression, but division always produces floats. So, 7 divided by 3 point 5 as an example

of a mixed expression, where I have an int and float and this division results in 2 point 0

and 7 by two results in 3.5.

(Refer Slide Time: 09:15)

Now there are some operations where we want to preserve the integer nature of the

operands. We have seen one repeatedly in gcd which is the modulus operator, the

remainder operator. But the req corresponding operator that go through the reminder is

the quotient operator. So, if I use a double slash it gives me the quotient. So, 9 double

slash 5 says how many times 5 going to 9 exactly without a fraction and that is 1 because

in a 5 times 1 is 5 and 5 times 2 is 10 which is bigger than 9 and the remainder is 4. So, 9

percent 5 will be 4. Another operation which is quite natural and common is to raise one

number to another number and this is denoted by double star. 3 double star 4 is what we

would write normally as 3 to the power 4 is 3 times, 3 times, 3 four times right and this is

81.

(Refer Slide Time: 10:12)

Now there are more advanced functions like log, square root, sin and all which are also

built into python, but these are not loaded by default. If you start the python interpreter

you have to include these explicitly. Remember we said that we can include functions

from a file we write using this import statement. There is a built in set of functions for

mathematical things which is called math. So, we must add from math import star; this

can be done even within the python program it does not have to be done only at the

interpreter. So, when we write a python program where we would like to use log, square

root and sin and such like, then we should add the line from math import star before we

use these functions.

(Refer Slide Time: 10:58)

We have seen three concepts - names which are what we use to remember values, values

which are the actual quantities which we assign to names and we said that there is a

notion of a type. So, type determines what operations are legal given the values that we

have. So, the main difference between python and other languages is that names

themselves do not have any inherent type. I do not say in advance that the name i as an

integer or the name x is a float. Names have only the type that they are currently

assigned to by a value that they have.

The type of a name is not fixed. In a language like C or C++ or Java we announce our

names in advance. We declare them and say in advance what type they have. So, if we

see an i in an expression we know in advance that this i was declared to be of type int

this x was declared to be of type float and so on. Now in python this is not the case.

(Refer Slide Time: 12:00)

So, let us illustrate this with an example. So, the name main feature of python is that a

name can be assigned values of different types as the program evolves. So, if we start

with an assignment i equals to 5 since 5 is an int i has a type int. Now if we take an

expression, which produces an int such as 7 times 1, i remain an int. Now if we divide

the value of i by 3. So, at this point if we had followed the sequence i is 7. So, 7 by 3

would be 2.33 and this would be a float.

Therefore, because the operation results in a float at this point j is assigned the value of

type float. Now if we continue at some later stage we take i and assign it to the value 2

times j, since j was a float i now becomes float. In the interpreter there is a useful

function called type. So, if you type the word type and put an expression and either a

name or an expression in the bracket, it will tell you actually type of the expression.

Now although python allows this feature of changing the type of value assigned to a

name as the program evolves, this is not something that is recommended. Because if you

see an i and sometimes its a float and sometimes its an int it is only confusing for you as

a programmer and for the person trying to understand your code. The same way that we

said before that we would like to organize our python code so that we define all functions

before we execute statements, it is a good idea to fix in advance in your mind at least,

what different names stand for and stick to a consistent way of using these either as ints

or as floats.

(Refer Slide Time: 13:54)

Let us execute some code and check that what we have been saying actually happens. So,

supposing we start the python interpreter and we say i is equal to 5, then if we use this

command type i it tells us type of i. So, it returns it in the form which is not exactly

transparent, but it says that i is of class int. So, you see the word int, if i say j is equal to 7

point 5 and i ask for the type of j then it will say j is of class float. So, the names int and

floats are used internally to signify the types of these expressions. Now if I say i is equal

to 2 times j as we suggested i has a value 15 point 0, because j was a float and therefore,

the multiplication resulted in a float and indeed if we ask for the type of i at this point it

says that i is now a float.

The point to keep in mind is that the name is themselves do not have fixed types they are

not assigned types in advance. It depends on the value that is currently stored in that

name according to the last expression that was assigned.

(Refer Slide Time: 15:05)

Another important class of values that we use implicitly in all our functions are Boolean

values which designate truth or falseness. So, there are two constants or two basic values

of this type which in python are called true with the capital “T” and false with the capital

“F”. So, true is the value which tells something is true. So, when we remember we wrote

conditions like if something happens if x is equal to y do something, x mod 7 is equal to

something, to something in our gcd function. So, the output of such an expression where

we compare something to another expression compare an expression on the left to an

expression on the right is to determine whether this comparisons succeeds or fails when

it succeeds it is true and when it fails it is false.

These are implicitly used to control the execution of our program. So, we need to have a

way of recording these values and manipulate it. The basic values are true or false and

typically there are three functions which operate on these values. So, not negates the

value. So, true is the opposite of false. So, not applied to true will give us false not

applied to false will give us true and follows the usually English meaning of and so,

when we say that something is true and something else is true we mean that exactly both

of them are true. So, x and y two values of Boolean type will be the expression x and y

will be true provided at the moment x has a value true and y also has a value true. If

either of them is not true then the output x and y is false.

“Or” again has an English meaning, but the meaning in computer science and logic is

slightly different from what we mean. So, normally when we say or we mean 1 or the

other. So, you might say either i will wake up in time or i will miss my bus. So, what you

will mean is that one of these two will happen it is unlikely that you mean that you will

wake up in time and you will miss your bus.

It is when we use or in English we usually mean either the first thing will happen or the

second thing will happen, but not both, but in computer science and logic or is a so,

called inclusive or not exclusive, its not exclusively one will happen or the other, but

inclusive both may happen. So, x or y is true if at least one is true. So, one of them must

be true, but it also possible when both are them true.

(Refer Slide Time: 17:28)

The most frequent way in which we generate Boolean values is through comparisons we

have already seen the two of these. So, we have seen equal to - equal to. This is the

actual equality of mathematics not the single equal to which is the assignment. So, if x

equal to equal to y checks, whether the value of x is actually the same as the value y and

if so, it returns the value true otherwise, it returns false.

And the corresponding inequality operator is exclamation mark followed. So, this is not

equal to exclamation is equal to is a symbol for not equal to and this is the usual

mathematical. And then of course you have for values which can be compared as smaller

or larger you have less than, greater than this is less than equal to and this is greater than

equal to. So, we have these 6 logic logical comparison operators' arithmetic comparison

operators which yield a logical value true or false.

(Refer Slide Time: 18:24)

And the usual thing we will do is combine these. So, we might want to say that check if

the reminder when divided by n is 0 provided n is 0 not 0. So, if we say n is greater than

0 and this it will require n to be number bigger than 0 and the reminder n divided by n to

be equal to 0. So, this says n is a multiple of n and n is not 0. And we can take an

expression of this file kind of comparison, which yields as we said a Boolean value, and

take this Boolean value and assign it to a name.

So, we can say that n is a divisor of m if the reminder of m divided by n is equal to 0.

And we can say that the fact that it is a divisor its true provided this happens. So, divisor

is now of type bool right and it has a value true or false depending or not whether or not

n divides m evenly.

(Refer Slide Time: 19:22)

Let us look at an example of how we would use Boolean values. So, let us get back to the

divides example. In mathematics we write m divides n to say that m is a divisor of n. So,

this means that m times k is equal to n for some k. So, m divides n if the reminder of n

divided by m is 0. If so you return true else you return false right. This is a very simple

function it takes two arguments and checks if the first argument divides the second

argument.

(Refer Slide Time: 20:00)

Now what we can do is define an another function called even whose value is derived

from here. So, we check whether two is a divisor of this number. So, we check whether 2

divides n; if 2 divides n, then n is even, we return true; if 2 does not divide n, n is odd,

we return false. So, similarly we could say define odd n else the negation of the previous

case. So, if 2 divides n then n is not odd.

You take the answer about whether 2 divides n or not, and reverse it to get the answer

odd. So, if 2 divides n, you negate it and say odd is false; if 2 does not divide n, you get

false back and you negate and say odd is true. So, we just wanted to emphasise that

Boolean values can be computed, assigned, passed around just like numerical values are.

(Refer Slide Time: 20:50)

To summarise what we have seen is that the basic type of statement is to assign a name

to a value values have type and these determine what operations are allowed. So, we can

use for instance arithmetic operations on numeric types, we can use logical operations

like and, or, and not on Boolean types, but the important difference between python and

traditional languages where we declare names in advance is that python does not fix

types for names. So, we cannot say that 'i' has the type int forever; 'i' will have a type

depending on what it is assigned. A name inherits the type from its currently assigned

value and its type can change as a program evolves depending on what values have been

assigned.

What we have seen in this particular lecture are 3 basic type int, float and bool. As we go

along this week, we will see more types with interesting structures and interesting

operations defined on them.

