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Matrix multiplication 

 

This is a final example to illustrate dynamic programming. We look at the problem of 

matrix multiplication. 
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If you remember how matrix multiplication works, you have to take two rows, two 

matrices with compatible entries, and then we compute a new matrix in which for each 

entry there, we have to multiply a row here by a column of the same length and add up 

the values. If we have a matrix which is m by n then this must have n times p, so that we 

have a final answer which is m times p. In the final entry, we have to make mp entries in 

the final product matrix; and each of these entries, require us to compute this sum of 

these n entries, so that takes us order n time. With total work is, usually easy to compute 

us m times n times p. 

So, AB i j is this long sum and this sum has 1, 2, 3 up to n entries. Computing matrix 

multiplication for two matrices has a very straight forward algorithm which is a product 

triple nested loop which takes order m times n times p, if all of the dimension are the 



 

 

same this is an order n cubed algorithm. Now there are more clever ways of doing it, but 

that is not the purpose of this lecture, but the naive straightforward, way of multiplying 

two matrices is m times n times p. Our interest is when we have a sequence of such 

multiplications to do. 
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Supposing, we want to multiply three matrices together A times B times C, then it turns 

out it does not matter whether we first multiply AB and then multiply C or we first 

multiply A and then multiply BC, A times BC, because this is stated as the associative 

the order in which we group the multiplication does not matter just for normal numbers. 

If we do 6 times 3 times 2, it does not matter whether you do 6 times 3 first, or 3 times 2 

first finally, the product is going to be the same. So, the bracketing does not change the 

answer the final value is the same, but it turns out that it can have dramatic effects on the 

complexity of computing the answer. Why is this the case. 
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Suppose, we have these matrices A, B and C, and A and B have these columns and rows. 

A is basically got 1 by 100, A just has 1 row and 100 columns and B has a 100 rows and 

1 column. And C has again 1 row and 100 columns. These are matrices which look like 

this. Now what happens is that when I multiply d times C then I get something which is 

100 into 1 into 100. So, we will get an output which is a 100 by 100 matrix, so that has 

10000 entries, so it is going to take us 10,000 steps. 

Now when I multiply A by this I am going to get 1 into 100 into 100 that is another 

10000 step. If I do A, after I do BC and I do 10000 plus 10000, so I do 20000 steps. Now 

if I do it the other way, if I take A times B first then this whole thing collapses into a 1 by 

1 single entry. So, I get 1 into 100 into 1 in 100 steps, I just collapse this row and this 

column into a single entry that is like computing one entry in a matrix multiplication 

with the resulting thing is exactly that one entry. 

Now I have this one entry, and again I have to multiply it by this thing and that will take 

me for each of the columns in this I will get one entry, so that will take me 100 steps. I 

take 100 steps to collapse this A into B into a single cell, and another 100 steps after that 

to compute that product into C. So instead of 20000 steps, I have done it in 200 steps. 

This is the way in which the sequence of multiplications though multiplication is 

associative and it does not matter what you do you will get the same answer; the 



 

 

sequence in which you do the associative steps can dramatically improve or worsen the 

amount of time you spend doing this. 
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In general, we have a sequence M 1 to M n and each of them has some rows and 

columns, and what we are guaranteed is that each adjacent pair can be multiplied. So, r 1 

c 1, r 2 c 2 the first two are such then c 1 is equal to r 2, the number of columns in the 

first matrix is equal to the number rows in second matrix, similarly, c 2 is equal to r 3 

and so on. These dimensions are guaranteed to match, so the matrix multiplication is 

always possible.  

Our target is to find out in what order we would do it. So, we can at best do two matrices 

at a time, we only know how to multiply A times B, we cannot take three matrices and 

directly multiply them. If we have to do three matrices, we have to do in two steps A 

times B and then C, or B times C and then A. Now same way with n matrices, we have to 

do two at a time, but those two at a time could be a complicated thing. I could do M 1 2 

then I can combine that and do that combination with 3 or I can do M 1 2, M 3 4 and 

then do combination of M 1 2 multiplied by M 3 4 and so on. 

What is the optimal way of computing the product, what is the optimal way of putting 

brackets in other words? Brackets are what tell us, so when we say M 1, M 2, M 3, M 4 

then one way of computing it just to do this right do M 1, M 2, then M 3, M 4. And other 

way of doing it would be to say do M 1, M 2 and then do that multiplied by M 3 and then 



 

 

M 4 and so on. So, different ways of bracketing correspond to different evaluation orders 

for this multiplication. And what you want to do is kind of calculate without doing the 

actual computation which is the best sequence and which to do this calculation, so that 

we optimize the operations involved. 
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What is the inductive structure? Finally, when we do this remember we only do two at a 

time. At the end, we must end with the multiplication which involves some group 

multiplied by some group it must look like this, and must have this whole thing 

collapsing to some M 1 prime, and this whole thing collapsing to M 2 prime and finally 

multiplying M 1 prime by M 2 prime. In other words M 1 prime is for some k it is from 

M 1 all the way up to M k, and M 2 prime is from k plus 1 up to n. So, this is my M 1 

prime and this is my M 2 prime, and this k is somewhere between 1 and n. 

In the worst case I could be doing M 1, and on the other side I can doing it I could have 

done M 2 up to M n this whole thing. This whole thing is my, the other worst cases I 

could have done M 1 2 not worst, but extreme cases M 1 into M n minus 1, I might have 

already computed, and now I want to finally, multiply it by M n or it could be anywhere 

in between. If I just pick an arbitrary k then the first one is has r 1 rows c k columns. 

So, second one as r k plus one rows c n column, but we know that c k is equal to r k plus 

1. So this matrix will work. The final computation is going to be r 1 into c k into c n 

right, m into n into p - the rows into the column, common number of column row into the 



 

 

final number of columns. So this final multiplication, we know how much it is going to 

cost. And to this, we have to recursively add the inductive cost of having computed the 

two factors; how much time it will takes us to do M 1 prime how much time it will take 

us to do M 2 prime.  
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We have that the cost of M 1 splitting at k is a cost of M 1 to M k plus the cost of M k 

plus one to M n plus the last multiplication r 1 into c k to c n. So, clearly this cost will 

vary for different case, and there are many number of cases. We said there are n minus 1 

choices of k, anything from 1 to n minus 1 we can choose as k. There are n minus 1 sub 

problems. So, when we did the longest common sub sequence problem, we had two sub 

problems. We could either drop the first letter a i or the second letter b j, and then we 

have to consider two sub problems. We had no way of knowing which is better, so we 

did them both and took the max. 

Now here we have n minus 1 different choices of k, we have no way of knowing which 

of this case is better. So, again we try all of them and take the minimum. There we were 

doing the maximum because we want the longest common subsequence, here we want 

the minimum cost so we choose that k which minimizes this split, and recursively each 

of those things would minimize their split and so on. So, that is the inductive structure.  
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Finally, we say that the cost of multiplying M 1 to M n is the minimum for all choices of 

k of the cost of multiplying M 1 to M k plus the cost of multiplying M k plus 1 to M n 

plus. Of course, for that choose of k, we have to do one final multiplication which is to 

take these resulting sub matrices, so that is r 1 into c k into c n. So, when we take this, so 

we have M 1 to M n, so we have picked M 1 to M k. 

Then as before what will happens is that we will have to split this somewhere, so we will 

we will now end up having some segment which is neither M 1 nor M n, it starts at some 

M j and goes to M k. In general, we need to express this quantity for arbitrary left and 

right point, we cannot assume that the left hand point is 1; we cannot assume the right 

hand point is n right. 
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In general, if we have a segment from M i to M j, then we want the smallest value of 

among all the values of k from i to j minus 1, we want the minimum cost which occurs 

from computing the cost of M i to M k, and M k plus 1 to M j, and the cost of this final 

multiplication which is r i into c k into c j. This quantity we will write as cost i j cost i j is 

a cost of computing the segment from M i to M j which involves picking the best k. So, 

M i to M j is called cost i j, and we use this same recursive inductive definition choose 

the best. 

(Refer Slide Time: 10:07) 

 



 

 

The base case well if we are just looking at a segment of length 1, supposing we just 

want to multiply one matrix from 1 to 1, or 3 to 3, or 7 to 7 nothing is to be done. It is a 

just matrix there is no multiplication, so the cost is 0. We can then write out this cost i j 

equation saying the minimum over k of cost i k plus cost k plus 1 j plus r i c k c j which 

is the actual multiplication. And of course, i is always going to be less than or equal to j, 

because we are doing it from left to right, so we can assume that the segment is given  to 

us with two end points where i is less than or equal to j.  
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So, i is less than or equal to j, and we look at cost i j as a kind of matrix then this whole 

area where i is greater than j is ruled out. So, we only look at this diagonal. And the 

entries along the diagonal are the ones which are of the form i comma i, so all these 

entries are initially zero right. There is no cost involved with doing any multiplication 

from position j to position j along this diagonal. Now, in order to compute i comma j, I 

need to pick a k, and I need to compute for that k all the values I mean I have to compute 

i k, and so it turns out that this corresponds to saying that if I want to compute a 

particular entry i comma j, then I need to choose a good k. 

And in order to choose a good k, I need so this I can express in many different ways. I 

can say pick, so for example, supposing I want to compute this particular thing then I 

have to say pick this entry i to i and then I want the entry i plus 1 to j. So, I have i plus 1 



 

 

to j this entry. These two entries I have to sum up; otherwise, I have to take this entry and 

sum it up with this entry. 

In general, if I have a thing there, I will say if I choose this entry as my k point then I 

must add this entry to get it up, and take this sum or I have to take this entry and add this 

entry and then add this and so on. In general, we could have order n values I need to 

compute for this I need to compute, I need all the values here and I need all the values 

here.  
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I need something to the left and to the bottom, but if I start in the diagonal then it 

becomes easy, because I can actually say that if I have initially these values filled in, this 

is the base case. Then to the left and below, I can fill in this because I know it is values to 

the left, I know this value to the left and below, so I can fill up this diagonal. In the next 

step, I can fill up this diagonal, because I have all the values to left below. Now at this 

entry, I have values to the left and below, so I can fill up this diagonal. So, I can fill it up 

diagonal by diagonal. This is the order in which I can fill up this table using this 

inductive definition because this is the way in which the dependency is stored. 
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This is the code for this particular thing. So, you can go through it and just check the 

only thing that you need to notice that we have used some. 
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So what we are doing is, when we compute as we said one entry. Supposing, we are 

computing this one entry then we want to compute the minimum across many different 

pairs right this entry this entry and so on. Remember what we did when you computed 

the maximum longest common sub word, we assume that the maximum was zero, and 

every time we saw a bigger value we updated it. Here, we want the minimum entry. So, 



 

 

what we do is we assume the minimum as some large number and every time we see an 

entry, if it is smaller than the minimum we reduce it. 
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That is what it is happening here, when we start the loop we assume that the value for r c 

is actually infinity. Now what is infinity? well you can take infinity So that we can take 

for instance the product of all the dimensions that appear in this problem. You know that 

the total dimension will not be more than that. So, you can take the product of all the 

dimensions you can take a very large number, it does not matter something related to 

what your problem as. So, we have not defined it in the code. The important thing is we 

are computing minimum. 

Instead of starting with 0, and updating it when you do maximum; you start with the 

large value and keep shrinking it. So every time, we find a sub problem which is smaller 

than the current value that we have seen then we replace that value as the new minimum, 

so that is all that is important here. Everything else is just a way to make sure that we go 

it, go through this table diagonal by diagonal, and for each diagonal we scan the row and 

the column and compute the minimum across all pairs in that row and column. 
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As with this LCS problem, we have to fill an order n squared size table, but the main 

difference between LCS and this is that in order to fill an entry in the LCS thing we have 

to look at only a constant number of entries. So, order mn or order n squared, but the 

point was each entry takes constant time, so the effort involved is the same as size of the 

table, m n table or takes m n time. Here, unfortunately it is not the case right. We saw 

that an entry will take time proportional to it is distance from the diagonal. In general, 

that will add an order n factor. 

Though we have order n squared by two entries actually order n squared entries, we 

would have to account for order n work per entry because each entry has to scan the row 

to it is left in the column below not just one entry away from it. And so this whole thing 

becomes order n cubed and not order n square. So, it is this is some point to keep in mind 

that there could be problems, where the complexity is bigger than the table size. All the 

examples we saw before that is the reason to do this example. 

In all the examples we saw before, the Fibonacci we had a table which is linear in n and 

it took time linear in n to fill it. For the grid path and for longest common subsequence, 

we had tables, which are m by n, but it took only n by m time or m by n time to fill that. 

Here, we have a table which is n by n, but it takes n cube time to fill it up because each 

entry it requires more than constant time, it actually takes time proportional to n. 


