
Programming, Data Structures and Algorithms in Python

Prof. Madhavan Mukund

Department of Computer Science and Engineering

Indian Institute of Technology, Madras

Week - 08

Lecture - 03

Longest Common Subsequence

We are in the realm of Inductive Definitions, Recursive Functions and Efficient

Evaluation of these using memorization and dynamic programming.

(Refer Slide Time: 00:04)

So, we are looking examples of problems where the main target is to identify the

inductive structure and once you identify the inductive structure then the recursive

structure of the program becomes apparent from which you can extract the dependencies

and figure out what kind of memo-table you have and how you will can iteratively using

dynamic programming.

This is something which comes to the practice and by looking at more examples

hopefully the procedure become clearer, but the key thing to dynamic programming is to

be able to understand the inductive structure. So, you need to take a problem, identify

how the main problem depends on its sub parts and using this come up with the nice

inductive definition which you can translate in to a recursive program. Once you have

the recursive program then the memo-table and the dynamic programming almost comes

out automatically from that.

This is the problem involve in words. So, what you want to do is take a pair of words and

find the longest common subword. For instance, here we have secret and secretary and

secret is already also inside secretary and clearly secret is the longest word in secret

itself. The longest subword that is common is the word secret and it has length 6. Let we

move to the next think bisect and trisect then actually this should be isect that say which

has length 5, similarly if we have bisect and secret then sec.

When we say subword, of course we do not mean a word in the sense; we just mean a

sequence of letters. So, s e c is the longest common subword in has length 3 and if you

have two very different words like director and secretary, sometimes you might have

only small things, for example, here r e and e c are, for examples of subword but there

are really very long words which are common to the subword is only length 2.

(Refer Slide Time: 02:11)

Here is the more formal description right. So, supposing I have two words u and v. So, u

is of length m and v is of length n and the number positions using python notation and

number 0 to n minus 1, 0 to n minus 1 then what I want to do is able to start at a i and go

k steps. So, i to i plus k minus 1 and b j to j plus k minus 1 such that, these two segments

are identical, this is a common subword and we want to find the longest such common

subword, what is the k, we do not even want to subword, will find that subword will be a

byproduct. You first need to just find k, what is the length of the longest common

subword of u n?

(Refer Slide Time: 02:56)

There is a brute force algorithm that you could use which is you just start at i and j in two

word. In each word you can start a position i in u j in v and see how far you can go

before you find they are not. So, you match a i and b j right. So, if a i and b j work then

its fine. So, it should be b j and if a i and b j work then you go to a i plus 1 b j plus 1 and

so on and whenever we find two letters which differ then the commons adverse starting

at a j has ended and you so from i j I have a common subword of something.

Now, among all the i js you look for the longest one and that becomes your answer. Now,

this unfortunately is effectively now an n cube algorithm. We think of m and n can be

equal technically m n squared because there are m times n different choices of i and j and

in general I started i j and then I have to go from i to the end right and from j to the end.

So, we have to do a scan for each i j in this scan in general adds up to an order, order n

factor and so we have order m n squared or order n cube if you like.

(Refer Slide Time: 04:09)

Our goal is to find some inductive structure which makes this thing computationally

more efficient. So, what is the inductive structure? Well we have already kind of seen it

when can we say that there is a commons subword starting at i j of length k, the first

thing is that we need this a i to be the same as b j. So, I need this condition and now if

this is a commons subword of length k at i j then what remains of subword namely this

segment from i plus 1 to this and j plus 1 to this must also match and they must be in turn

be a k minus 1 length subword from here to there. So, we want to say that there is a k

length subword starting at i j if a i is equal to b j and from i plus 1 and j plus 1 there is a k

minus 1 length subword.

In other words, I can now write the following definition, I can say that the longest

common the length of the longest common subword l c w starting from i j. Well, if they

two or not the same if a i is not the same the same there is no common subword at all

because if I start from i immediately have two different letters. So, when the length is 0

otherwise I can inductively find out what is the longest common subword to may right

start i plus 1 start from j plus 1.

Find out what I can do from there and to word I can add one letter because this current

letter a i is equal to b j. So, I get one plus that and the base case of the boundary

condition is when one of the two words is empty right. If I have no letters left, if I have

gone i j I am looking at difference combinations i and j. So, if either i or j has reached the

end of the word then there is no possibility of a common subword at that point. So, when

we reach the end of one of the words say answer must be 0.

(Refer Slide Time: 05:58)

This gives us the following definitions. So, remember that u is actually has length m. So,

it has 0 to m minus 1. So, what we will do is, we will add a position of m to indicate that

we have crossed the last letter. Similarly, v has 0 to n minus 1 has valid positions. So, we

will use in this 0 to n. So, if i becomes m or j becomes n it means that that corresponding

index has gone beyond the end of the word right. So, this should be m and this should be

n. We have that if you reach m then lcw of n comma j 0 is 0 because we have gone past

the length u.

Similarly, if you reach n, but lcw of i comma n is 0 because you gone past the length of v

and if you are not gone past the length, if you are somewhere inside the word in a valid

position then the length is going to be 0 if the two positions are not the same. If a i is not

equal to b j, otherwise inductively I compute the length from i plus 1 and j plus 1 and add

one to it. this is the case when a i is equal to b j because that segment i can extend by. So,

this is just stating in an equation form the inductive definition that we purposely earlier.

(Refer Slide Time: 07:18)

So, here we saw example for bisect and secret. We have position 0 to 5 and then we have

the 6 position indicating the end of the word and now remember that the way our

inductive definition was phrased i j depends only on i plus 1 j plus 1. So, actually the

dependencies at this ways to the arrows are indicating that and in order solve this I need

to solve this first. The value at 2 comma 3 depends on the value 3 comma 4.

In order to solve this I do not need to solve anything because everything once i. So, in

order to solve this I only need to so anyway. We can basically, we have this simple thing

which says that the corner and the actually the right column and the bottom thing do not

require anything and we know that because those are all 0s.

(Refer Slide Time: 08:08)

We can actually fill in those values as 0 because that is given to us by definition and now

we can start, for instance, we can start with this value because its value is known. We

will look at whether this t matches that t it is that. So, we take one plus the value two is

bottom. So, we get 1 and then we can walk up and do the same thing at every point we

will say that if c is not the same as t. So, none of these letters if you look at these letters

here right none of these letters are t. So, for all of these letters I will get 0 directly

because it says that a i is not equal to b j.

I do not even have to look at i plus 1 j plus 1, I directly says that 0 because is not there.

So, in this way I can fill up this column. This is like our grid pack thing I can fill by

column by column even though there the dependency was to the left and bottom and here

the dependence is diagonally bottom right. I can fill up column by column and I can keep

going and if I keep going I find an entry 3. So, the entry 3 is the largest entry that I see

and that is actual answer this entry 3.

(Refer Slide Time: 09:13)

And now we said earlier that we are focusing on the length of the longest common

subword not the word itself in the reason. We need to; we can afford to do that is because

we can actually read of the answer once we have got the lengths. So, we ask ourselves

why we did we get a 3 here. We got 3 here because we came as 1 plus 2. Since we came

as 1 plus 2 it must mean that these two letters are the same. So, we got 2 here is because

it is 1 plus 1. So, these two letters must also be the same. Finally, we got one here

because this is 1 plus 0. So, these two letters are the same. Therefore, these three letters

must be the same.

(Refer Slide Time: 09:54)

If you walk down from that magical value, the largest value and we follow the sequence

then we can read of and the corresponding row or column because they are the same,

your actual subword which is the longest common subword for these two.

(Refer Slide Time: 10:10)

Here is a very simple implementation in python. So, all it says is that you start with the

two words u and v, you initialize this lcw thing at the boundary at the nth row on the nth

column and then, now you remember the maximum value. So, you keep that by

initializing the maximum value to 0 and then you fill up in this particular case the

column order.

For each column, then for each row and that column you fill up the thing using the

equation, if it is equal i to 1 plus otherwise as it say 0 and if i see and a new value this is

the thing where I update if i see and new entry which is bigger than the entry which is

currently the maximum, I update the maximum. So, this is allows me to quickly find out

what is the maximum length overall and finally, when I go through this look i would

filled up the entire table and i will return the maximum value i saw over.

(Refer Slide Time: 11:08)

So, when we did it by brute force we had an order m n square algorithm. Here we are

filling up table which is of size order m by n and each entry only require us to check the

ith position in the word the jth position in the world and depending on that, if necessary

look up one entry i plus 1 j plus 1. It is a constant time update. We need to fill up one

table of size order m n each update takes constant time. So, this algorithm brings us from

m n squared in the brute force case to m n using dynamic programming.

(Refer Slide Time: 11:43)

A much more useful problem in practice than the longest common subword is what is

called the longest common subsequence. So, the difference between a subword and a

subsequence is that we are allowed to drop some letters in between. So, for instance, if

you go back to the earlier examples of secret and secretary, there is no problem because

the subword is actually the entire thing and again for bisect and trisect also it is the same

thing, but if we have bisect and secret earlier if we did not allow us to skip, we could

only match sec with sec, but now we can take this extra t and we can skip there 2 and

match this t as say that s e c t is a subsequence in the right word, which matches the

corresponding subsequence which is also a subword in the left word in the right is not a

subword.

For the subsequence i have to drops some letters to get s e c t. Similarly, if I have

secretary and director then I can find things like e c t r e c t r in both of them by skipping

over with judiciously. So, why is this are better problem?

(Refer Slide Time: 12:54)

Well we will see that, but effectively what skipping mean, skipping means that I get

segments which are connected by gaps.. So, I get this segment then I want to continue

this segments. So, I look for the next match, I skip, but the next match must come to my

right. It must come to the right and below the current match because I cannot go

backwards in a word and start the match again. So, I cannot, for instance go here and say

that this is an extension because this requires me to go back and reuse the e that I have

seen in sec to match.

The second e in secret which is not allowed, I can keep going forward which in the table

corresponds to going to the right and back to the right and down. So, I am going

increasing the order of index in both words and I can group together these things and this

is what the longest kind of subsequences. So, we could in principle look at the longest

common subword answer and look for these clever connections, but it turns out there is a

much more direct way to do it in an inductive way.

(Refer Slide Time: 13:56)

The motivations, well one of the big motivations for subsequence matching comes from

things like genetics, for instance, when we compare the genes sequence of two organisms

they are rarely equal. So, what we are looking for are large matches, where there might

be some junk genes in between which you want to discard. So, you want to say that two

genes sequences or two organisms are similar, if there are large overlaps over the entire

genome not just looking for individuals segment along, but by just throwing away the

minimal things on both sides, we can make that align as we call.

And other important example is something called a diff, which is Unix command

compared to text files. So, this treats in fact, line by line two files as a word. So, each

line is compared to each line in the other file if the line match they considered to be

equal and this is the good way of comparing one version of the file with other version of

the file. Supposing you are collaborating on a document or program with somebody else

and you send it by email and they send it by.

So, they had made some changes then diff tells you quickly, what are the differences

between the file you sent and the file you go back and diff essentially is doing the same

thing is trying to find the longest match between the file that you sent of the file you got

back and the shortest way in which you can transform one to the other by change in the

few lines its. These are some typical example of this longest common subsequence

problem and therefore, it is usually much more useful in practice in the longest common

subword problem.

(Refer Slide Time: 15:29)

What is the inductive structure of the longest common subsequence problem? As before

we have the words laid out. So, we can say a 0 to a m or a minus 1 a n minus 1, it does

not matter how you choose it, but in the picture it says a n, but if you want to you can

remove this last. So, a 0 to a n minus 1 is the first word b 0 to b n minus 1 is the second

word and now there are two cases. The first case is the easy case, supposing I have these

two things are equal then like before I can inductively solve the problem for a 1 and b 1

onwards and add this. I can extend that solution by saying a 0 match is b 0 and then

whatever matches.

What is the subsequence, the subsequence actually is some kind of a matching, it says

that you know it will say that this matches this and then this matches this, these are the

same and this match is this and then this match is this and so on. Only thing is that these

lines cannot over lap, they must be kept going from left to right without over lap. So, this

kind of paring up equal letters, the maximum way in which again to do this is a longest

common subsequence.

Now, what we are saying is that if I can actually match the first two things then I should

match them and then I can go ahead and match the rest as I want, and the reason is very

simple, supposing the best solution did not match these supposing you claim that the best

solution actually requires meet match a 0 and b 1. Well, if I could match a 0 and b 1 I can

also undo it and match a 0 and b 0 and then continue because a 0 and b 1 if they match

and a 1 if match is to right. So, I can take that solution and change it to a solution where

a 0 matches b 0. The first two letters are the same and might is well go with that and say

it is one plus the result of optimally solved in the rest, what if they not the same this is

the interesting case.

Supposing, these are not the same then what happens. Then can we just go ahead and

ignore a 0 and b 0, no right. So, it could be that a 0 actually matches b 1 or it could be

that b 0 matches a 1, we do not know, but we certainly know that a 0 does not match b 0.

So, we have to drop one of them because we cannot make a solution a 0 matching b 0,

but we do not know which one. So, what we do is we take two sub problems, we say let

us assume b 0 is not part of the solution then the best solution come out of a 0 to a and

minus 1 and b 1 to b n, b 0 is exclude because I cannot match it to the a 0 and whatever a

0 matches must match to the right. So, i must go ahead with it.

But maybe this is the wrong choice. The other choice should be to keep b 0 and drop a 0

and which case I do a 1 to a m minus 1 and b 0 to b m. These are two different choices

which one to choose, well since we do not know we solve them both. We solve if a i a 0

is not b 0 we solved both these problems a 1 to a m minus 1 b 0 and a 0 to a m minus 1 b

1 solve of them take the maximum one whichever one is better it is the one.

(Refer Slide Time: 18:45)

This in general will take us deeper in the words. So, we said a 0 b 0 will require solved it

for a 1 and b 0 or a b a 0 and b 1. So, in general we have a i and b j right. Again since we

have a i and b j then you will use the same logic if a i is equal to b j then it is one plus the

rest. So, this is the good case, if a i is not equal to b j then what we do is we look at the

same thing, we drop b j and solve it and symmetrically we drop a i and solve it and take

the better of the two. We take max of the solution from i and the solution from j plus 1.

If we say like we had before that lcs of i j is the length of the longest common starting to

i and j if a i is equal to b j it will be one plus the length start it from i plus 1 j plus plus 1.

If it is not equal it will be the maximum of the two sub problems where either increment

i or increment j and has with the longest common subword when we go to the last

position m and n we get 0.

(Refer Slide Time: 20:01)

So, here the dependency is slightly more complicated because depending on the case, I

either have to look at i plus 1 j plus 1 or I have to look at i plus 1 j or i j plus 1. So, I had

for this square, I had looked at its right neighbor, right diagonal neighbor and the bottom

neighbor, but once again the ones which have no dependency appear. So, earlier we had

for longest common subword we had only this dependency this mean that even a square

like this had no dependencies because there is nothing to its bottom right.

But now, for instance if we look at this picture, since we are looking bottom right and

left, if I look at this its dependencies are in three directions; two of the directions are

empty, but this direction there is dependence. So, I cannot fill up this square directly the

can only square, I can fill up directly is this one because it has nothing to its right nothing

in diagonally and nothing below.

(Refer Slide Time: 20:54)

So, I start from there and I put a 0 and as before we can go down this because now once

we have this, we have everything would to its left and once we have this and because we

are beyond the word where at the m, this dummy position, the row and column becomes

0, but the important thing to remember is the row and column become 0 not because they

have no dependency, but because we can systematically, fill it up exactly like in the grid

parts we can fill up the bottom row and the left most column there, here the right most

column.

Now, once we have this we can fill up this part right and then again we can have two and

three c entries we can fill up this. We have three entries we can fill up this, we have three

entries we can fill up this and we can fill up this column and we can do this column and

we can do this column by column and we propagate it and then finally, the value the

propagates here is our longest length of the longest common subsequences, we could

also do this row by row.

(Refer Slide Time: 21:44)

Now, how do we trace out the actual solution when the solution grows, whenever we

increment the number? So, we can ask why is this 4? So, we say that this is 4 not because

we did plus 3 because s is not equal to b, we did 4 because we got the max value from

here, why is this 4 again i is not equal to s. So, we got the max value from here why is

this 4, Oh s is equal to x. We must have got it by 3 plus 1, why is this because e plus e.

So, we must have got it from here. So, we follow the path according to the choices that

we made in applying the inductive function in order to generate the value at each parts.

In other words, for each cell i j that we write we remember whether we wrote it because

it was one plus that diagonal neighbor or the maximum of the left in the right in which

case we record whether the left or the bottom it was the maximum. Now, in this a picture

every time we take a diagonal step it means we actually had a match. So, this is the

match the first one here is a match s equal to s, this is the match e equal to e, this is the

match c equal to c. Now, after this point we are flat and then a at this point again we have

a match. So, we get s e c and t.

So, we can read of the diagonal steps along this kind a explanation of the longest number

largest number we got and each diagonals step will contribute to the final solution, now

there could be more than 1, because we have not got any example in this case, but

sometimes the max could be one of in both directions if I am taking max of the left the

right neighbor and the bottom they could be the same. I could have the situation like this

supposing I landed up here then I do not know whether I got it from here or from here.

So, I might have two different extensions which lead me to a solution. So, the longest

common subsequence need not be unique, but you can recover at least one by following

this path

(Refer Slide Time: 23:32)

So, here is the python code is not very different from the earlier one. We can just see we

have just initialize the last row and the bottom row on the last column and then as before

you walk up row by row, column by column and filling using the equation and in this

case, we do not have to keep track of the maximum value and keep updating because the

maximum value automatically propagates to the 0 0 value.

(Refer Slide Time: 23:56)

Just like the longest common subword, here once again we are filling in a table of size m

times n. Each entry only requires you to look at most do three other entries. So, one to

the right one to the bottom right in that the one below. So, it is a constant amount of

work. So, m n entries constant amount of work per entry, this takes time m times n.

