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In the last lecture we looked at how to make iterative or inductive definitions more 

efficient than naïve recursion, and we saw memoization and dynamic programming as 

tools to do this.  

Now, let us look at a typical problem and see how we can apply this technique. So, here 

is a problem of grid paths. So, we have a grid here, you can imagine there are roads 

which are arranged in a rectangular format. We can imagine that the intersections are 

numbered. So, we have (0, 0) at the bottom left corner and in this case, we have (5, 10) 

because going across from left to right we have 1, 2, 3, 4, 5 different intersections and 10 

going up. So, we have at (5, 10) the top right corner.  

If these are roads the constraint that we have is that one can only travel up or right. So, 

you can go up a road or you can go right, but you cannot come down. This is not 

allowed. These are one way roads which goes up and right, and what we want to ask is 

how many ways there are to go from the bottom left corner to the top right corner. So, 



we want to count the number of what are called grid paths. So, a grid path is one which 

follows this right. So, we want to know how many such different paths are there which 

take us from (0, 0) to (5, 10) only going up or right.  
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So, here is one path drawn in blue.  
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Here is a different path drawn in red and notice that these 2 paths actually, start in 

different directions from the first point and they never meet except with the target. They 

do not overlap at all. On the other hand we could have paths which overlap. This yellow 



path overlaps a part of its way with the blue path in this section and it also overlaps with 

the red path in 2 portions. There are many different ways in which we can choose to 

make this up and right moves and the question is, how many total such different paths 

are there? 
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There is a very standard and elegant combinatorial solution. So, one way of thinking 

about this is just to determine, how many moves we have to make. We have to go from 0 

to 5 in one direction and 0 to 10 in the other direction. So, we have to make a total 

number of 5 horizontal moves and 10 vertical moves, in other words every path no 

matter which direction we started and which move, which choice of moves we make 

must make 15 steps and of these 5 must be horizontal steps and 10 must be vertical steps, 

because they all take us from (0, 0) to (5, 10).  

So, all we have to do since we know that these 5 steps are horizontal and 10 are vertical 

is to just demarcate which ones are horizontal and which are vertical. Now once we 

know which ones are horizontal we know what sequence they come in because the first 

horizontal step takes us from column 0 to column 1, second 1 takes us from one to 2. So, 

we cannot do it in any order other than that.  

So, we have in other words we have 15 slots, where we can make moves and then we 

just say first we make an up move, then we make a right move then we make an up move 

then make another up move and so on. So, every path can be drawn out like this as 10 up 



moves and 5 right moves and if we fix the 5 right moves then automatically all the 

remaining slots must be 10 up moves or conversely.  

It is either 15 choose 5, it is the way of choosing 5 positions to make the right move out 

of the 15, and it turns out that the definition of 15 choose 5 is clearly the same as 15 

choose 10 because we could also fix the 10 up moves and the definition is basically... if 

you know the definitions... then n choose k is n factorial by k factorial into n minus k 

factorial.  

This k and n minus k basically says that 15 minus 5 is 10. So, we get a symmetric 

function in terms of k and n minus k. In this case we can apply this formula if you would 

like to call it that and directly get that the answer is 3003. There does not appear to be 

much to compute other than writing out large factorials and then seeing what the number 

comes.  
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But the problem becomes more interesting, if we constrain it by saying that some of 

these intersections are blocked for instance, supposing there is some road work going on 

and we cannot go through this intersection (2, 4). This is the intersection 2 comma 4 

second column and the fourth row counting from below. It’s actually 2 comma 3, but 1, 

2, 3, 4 yeah 2 comma 4. Now, if we cannot go through this then any path which goes 

through this particular block intersection should no longer be counted. Out to those  3003 

some paths are no longer valid paths. 
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For instance, in the earlier thing the blue path that we had drawn actually goes through 

this, the red path does not, where the yellow path overlapped with the blue path 

unfortunately in this bad section. It also passes through this. There are some paths which 

are allowed from the 3003 and some which are not. So, how do we determine how many 

paths survived this kind of block.  
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So, again we can use a combinatorial argument in order to be blocked a path must go to 

(2, 4) and then from (2, 4) to (5, 5). If we could only count how many paths go from (0, 



0) to (2, 4) and then how many paths go from (2, 4) to (5, 10), these are all the bad paths. 

So, we can count these bad paths and subtract them from the good paths. How do we 

count the bad paths well we can just solve a smaller version of the problem. So, we have 

an intermediate target.  

So, we solve this grid how many paths go from here to here, how many paths go from 

here to here. So, from (0, 0) to (2, 4) we get 4 plus 2 remember it 10 plus 5 it was a curve 

or get, 10; 4 plus 2 choose 2. So, we get 15 and from here to here the difference is that 

we have to do in both directions 3 and so, we have to go sorry we have to go up 6 and we 

have to go right 3, we are at (2, 4). So, we have to go from 4 to 10 and from 2 to 5.  

So, we have 6 plus 3 choose 3, 84 ways of going from (2, 4) to this and each of the ways 

in the bottom, can be combined with a way on the top. So, we multiply this and we get 

1260 paths which pass through this bad intersection, we subtract this from the original 

number 3003 and we get 1743 paths which remain. So, a combinatorial approach still 

works.  
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Now, what happens if we put 2 such intersections? So, we will you can do the same thing 

we can count all the parts which get blocked because of the first intersection, we can 

count all the paths which pass through in this case (4, 4) is the second intersection which 

has been blocked. So, we can count all these parts which pass through (4, 4). This we 



know how to do: we just computed it for (2, 4), but the problem is that there are some 

paths like the yellow paths which pass through both (2, 4) and (4, 4).  

So, we need a third count we need to count paths which pass through both of these and 

make sure we do not double count them. So, one way is that we just add these back. This 

is something which is called in combinatorics inclusion and exclusion. So, when we have 

these overlapping exclusions, then we have to count the overlaps and include them back. 

We have to keep doing this step by step. If we have 3 holes we get an even more 

complicated inclusion exclusion formula and it rapidly becomes very complicated even 

to calculate the formula that we need to get. Is there a simpler way to do this? 
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Let us look at the inductive structure of the problem, suppose we say we want to get in 

one step to intersection (i, j). How can we reach this in one step since our roads only go 

left to right and bottom to top, the only way we can reach (i, j) is by taking a right edge 

from it’s left neighbor. So, we can go from (i-1, j) to (i, j) or we can go from below from 

(i, j-1) to (i, j). Notice that if a path comes from the left it must be different from a path 

that comes from below. So, every path that comes from the left is different from every 

path that comes from below. So, we can just add these up.  
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In other words if we say that paths(i, j) is the quantity we want to compute, we want to 

count the number of paths from (0, 0) to (i, j). These paths must break up into 2 disjoint 

sets those which come from the left which recursively or inductively if you prefer to say 

is exactly the quantity paths(i-1, j). How many paths are there which reach (i-1, j) every 

one of these paths can be extended by a right edge to reach (i, j) and, they will all be 

different similarly paths(i, j-1) are all those paths which come from below, because they 

all reach the point just below (i, j) from there each of them will be extended in a unique 

way to (i, j) 

This gives us our simple inductive formula, paths(i, j) is just the sum of paths(i-1, j) and 

paths(i, j-1). Then we need to of course, investigate the base cases: in this case the real 

base case is just paths(0, 0): in how many ways can I go from (0, 0) and just stay in (0, 

0)? Well there is only one way, it is tempting to say 0 ways, but it is not 0 ways its one 

way otherwise nothing will happen. So, we have one way by just doing nothing to stay in 

(0, 0) and if we are now moving along the left column, if you are moving along the left 

column then there are no paths coming from its left because we are already on the 

leftmost column.  

So, all the paths to (0,j) must be extensions of paths which have come from below up to 

(0,j-1). Similarly if you are on the bottom row there is no way to come from below 



because we are already on the lowest set of roads. So, paths(i, 0) can only come from the 

left, from paths(i-1, 0). 
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This gives us a direct way to actually compute this even with holes because, the only 

difference now is that if, there is a hole we just declare that no paths can reach that place. 

So, we just add an extra clause which says paths(i, j) is 0 if there is a hole at (i,j); 

otherwise we use exactly the same inductive formulation and now what happens is, if I  

have a hole below me, if I have a hole below me, no paths can come from that direction 

because by definition paths(i, j) at that point is 0.  
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So, once again if we now apply this and do this using the standard translation from the 

inductive definition to a recursive program, we will find that we will wastefully 

recompute the same quantity multiple times for instance paths(5,10). If we have paths(5, 

10), it will require me to compute this and this. 

These are the 2 sub problems for paths(5, 10), namely (4, 10) and (5, 9) but, in turn in 

order to compute (4, 10) I will have to compute whatever is to its left and below it and in 

order to compute (5, 9) I will also have to compute what is to its left and below it and 

now what we find is that this quantity namely (4, 9) is computed twice, once because of 

the left neighbor of (5, 10) and once because of the neighbor below (5, 10).  

So, as we saw before we could use memoization to make sure that we never compute  

(i,j) twice by storing a table i comma j, and every time we compute a new value for i 

comma j we store it in the table and every time we look up, we need to compute one we 

first check the table, if it is already there we look it up, otherwise we will compute it and 

store it, but since we know there is a table and we know what the table structure is 

basically it is all entries of the form i comma j. We can also see if we can fill up this 

table iteratively by just examining the sub problems in terms of their dependencies.  
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In general a node the value depends on things to it left and below. If there are no 

dependencies, it must have nothing to its left and nothing below and there is only one 

such point namely (0, 0). This is the only point which is the base case which has nothing 

to its left and nothing below so its value is directly read. So, we start from here.  

(Refer Slide Time: 12:24)  

 

Remember that the base value at (0, 0) is one, and now once we have done this it turns 

out: you remember the road dependency, it said (i, 0) is (i-1, 0). So, we can fill up this, 

because this has only one dependency which is known now. In this way I can fill up the 



entire row and say that all along this row there is only one path namely the path that 

starts going right and keeps going right. Now we can go up and see that this thing is also 

known because, it also depends only on the value below it and once that is known then 

these 2 are known.  

So I can add them up; remember the value at any position is just the value to its left plus 

the value to its bottom and now I start to get some non trivial values, and in this way I 

can fill up this table row by row and at each point when I come to something I will get 

the fact with the dependency unknown. The next row looks like this and the next row. 

Now we come to the row with holes. So, for the row with holes, wherever we hit a hole 

instead of writing the value that we would normally get by adding its left and bottom 

neighbour we deliberately put a 0 because; that means, that no path is actually allowed 

propagating through that row. 

Now, when we come to the next row, the holes will automatically block the paths 

coming from the wrong direction. So, here for instance we have only 6 paths coming 

from the left because we have no paths coming from below similarly we have 26 paths 

coming from the left and no paths coming from below. This is how our inductive 

definition neatly allows us to deal with holes and from that inductive definition we 

recognize the dependency structure and we imagine the memo table and now we are 

filling up this memo table row by row so that at every point when we reach an (i, j) value 

its dependent values are already known. 

So, we can continue doing this row by row, and eventually we find look there are 1363 

paths which avoid these two.  
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So, we could also do the same thing in a different way instead of doing the bottom row, 

we can do the left column and the same logic says, that we can go all the way up then we 

can start in the second column, go all the way up and do this column by column and not 

unexpectedly, we should get the same answer. There is a third way to do this.  
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So, once we have one at (0, 0) then we can fill both the first element above it and the first 

element to its right. So, we can do this diagonal, now notice that any diagonal value like 

this one has both its entries. This has only one entry, this also. So I can now fill up this 



diagonal. I can go one more diagonal, then I can go one more diagonal. So, we can also 

fill up this thing diagonal by diagonal.  

The dependency structure may not require us to fill it in a particular way we might have 

very different ways to fill it up, all we want to do is systematically fill up this table in an 

iterative fashion not recursively we do not want to call f of I, j and then look at f of i 

minus 1, j. We want to directly say when we reach (i, j) we have the values we need, but 

the values we need could come in multiple different orders. So, we could have done it 

row wise, we could have done it column wise and here you see we can do it diagonally, 

but it does not matter so long as we actually get all the values that we need.  
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So, one small point, so we have said that we can use Memoization or we can use 

dynamic programming. One of the advantages of using dynamic programming is it 

avoids this recursive call. So, recursion we had mentioned earlier, also in some earlier 

lecture, comes with a price because whenever you make a recursive call, you have to 

suspend a computation, store some values, restore those values. There is a kind of 

administrative cost with recursion.  

So, actually though it looks like only a single operation and we call fib of n minus 1 or 

fib of n minus 2. There is actually a cost involved with suspending this operation, going 

there and coming back. So, saving on recursion is one important reason to move from 

Memoization to dynamic programming, but what dynamic programming does is to 



evaluate every value regardless of whether its going to be useful for the final answer or 

not.  

 In the grid path thing there is one situation where you can illustrate this. Imagine that we 

have these obstacles placed exactly one step inside the boundary. Now, if we want to 

reach this its very clear that I can only come all the way along the top row or all the way 

up the rightmost column, there is no other way I can reach them. So, anything which is 

inside this these positions there is no way to go from here out. There is no point in 

counting all these values.  

We have this region which is in the shadow of these obstacles which can never reach the 

final thing. So, when we do memoization when we come back and recursively explore it 

will never ask us to come here because it will never pass these boundaries. On the other 

hand our dynamic programming will blindly walk through everything. So, it will do row 

by row, column by column and it will eventually find the 0s, but it will fill the entire n by 

n grid. In this case how many will memoization do? It will do basically only the 

boundary. It will do only order m+n. 
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So, we have a memo table which has only a linear number of entries in terms of the rows 

and columns and a dynamic programming entry, which is quadratic; if both were n it will 

be n squared, thus is 2n. This suggests that dynamic programming in this case, is 

wastefully computing a vast number of entries. So n squared is much larger than 2n 



remember. It will take us enormous amount of time to compute it, if we just count the 

cost per entry, but the flip side is that each entry that we need to add to the memo table 

requires one recursive call. 

The reality is that these recursive calls will typically cost you much more, than the 

wastefulness of computing the entire table. In general even though you can analyze the 

problem and decide that memoization will result in many fewer new values being 

computed than dynamic programming. It is usually sound to just use dynamic 

programming as the default way to do the computation. 


