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As a final example of a user defined data structure we will look at binary search keys. 

We are looking at a situation where we need to maintain dynamic data in a sorted 

manner, remember that one of the byproducts of sorting is that we can use binary search 

to efficiently search for a value, but binary search can be used if we can sort data once 

and for all and keep it in sorted order if the data is changing dynamically then in order to 

exploit binary search will have to keep resorting the data which is not efficient.  

Supposing, we have a sequence of items and items are periodically being inserted and 

deleted now as we saw with heaps, for instance, if we try to maintain a sorted list and 

then keep track of inserts then each insert or delete, in this case would take order and 

time and that would also be expensive. However, it turns out that we can move to a tree 

like structure or a tree structure like in a priority queue it move to a heap and then do 

insert and delete also efficiently alongside searching.  



(Refer Slide Time: 01:11) 

 

The data structure we have in mind is called a binary search tree. So, in a binary search 

tree we keep exactly one copy of every value. It is like a set we do not keep duplicates 

and the values are organized as follows for every node all values which are smaller than 

the current nodes value are to the left and all values that are bigger than the current node 

value are to the right.  

Here is an example of a binary search tree, you can check for instance that to the left of 

the root 5, we have all values 1, 2 and 4 which are smaller than 5 and to the right of 5 we 

have the values 8 and 9 which are bigger, now this is a recursive property. If you go 

down, for instance, if you look at the node label two then below it has values 1 and 4 

since 1 is smaller than 2, 1 is to the left of 2 and since 4 is bigger than 2, 4 is to the right 

of 2. 

Similarly, if we look at the node 8, it has only one value below it namely 9 and therefore, 

it has no left child, but 9 is in the right subtree of 8. 
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We can maintain a binary search tree using nodes exactly like we did for a user defined 

lists except in a list we had a value and a next pointer in a binary search tree we have two 

values below each node potentially a left child and a right child. So, each node now 

consist of three items the value being stored the left child and the right child.  

If we look at the same example that we had 4 on the right then the root node 5 will have 

a pointer to the nodes with 2 and 8, the node 2 will have a pointer to the nodes 1 and 4, 

these are now what are called leaf nodes. So, they have no children. Their left and right 

pointers will be None indicating there is nothing in that direction. Similarly, 8 has got 

None as his left pointer because it has no left child and the right pointer points to 9 and 

the node with nine again has two None pointers because it is a leaf node. 
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Now, it will turn out that we will want to expand this representation in order to exploit it 

better for recursive presentations. So, what we will do is that we will not just terminate 

the tree with the value and the two pointers none you will actually add a layer of empty 

nodes with all fields None with this the empty tree will be a single empty node and a leaf 

node that is not none will have a value and both it is children will be empty nodes.  

It would not directly have None as it is left and right pointers it will actually help 

children which are empty. So, this makes it easier to write recursive functions and if we 

do not do this then it is a bit harder to directly implement recursive functions. 
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Just to understand how our tree structure changes this is the structure that we had before 

the same example. Here, notice that in the leaf nodes the leaf nodes have a value and 

both the child pointers left and right are directly none. So, we want to change this, what 

we want to do is to we want to insert below this an empty node at everywhere, where we 

see None, we want to insert and extract the node.  

This of course, grows up the tree a little bit, but then this cost is not that much as we will 

as you can calculate. So, if we do this then we get a new tree which looks like this right 
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Below every leaf node wherever we normally had a None pointer indicating that the path 

has ended we will explicitly add one extra node which has all three fields none and it will 

turn out that this is very useful to clean up our programming later on. So, this is a 

representation that we will use for a binary search tree each node has three pointers and 

at the leaf’s we have an extra layer of empty nodes with all three values none, none, 

none. 
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Here is the basic class tree. So, as before we have an init function which takes an initial 

values which is by default none. The init function works as follows right, we first setup 

the value to be initval which could be none if there is a value, then we create an tree with 

one node in which case we have to create these empty nodes. Now, notice that if we go 

back and we go do not give a values. So, maybe it is better to look at this case right if we 

do not give a value then we end up with a tree we just says none, none, none. So, this is 

our empty. 

The initial value is none we get this tree if the init value is not none then we get a tree in 

which we put the value v and then we make the left in the right pointers both point to this 

none, none. So, this is a tree that will contain exactly one value. So, depending on that 

the init values none or not none we end up either a tree with three nodes with two 

dummy nodes below or a single empty node denoting the empty tree. So, given this as 

before we have the function isempty which basically checks if the value is none, if I start 



looking at a tree and the very first node says none then that tree is empty otherwise it is 

not empty. 
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Let us first look at a way to systematically explore the values in a tree. These are called 

traversals and one traversal which is very useful for a binary search tree is an inorder 

traversal. So, what an inorder traversal does is that it first explores the left side. So, it 

will first explore this recursively again using an inorder traversal then it will display this 

and then it will explore the right.  

If you see the code you can see that if the tree is not empty you first do an inorder 

traversal of the left self tree then you pick up the value at the current node and then you 

do an inorder traversal of the right self tree and this produces the list of values. So, if we 

execute this step by step, 5 if we reach it says first do an inorder traversal of the left. 

We come down to two this is again not at a trivial tree. So, again we have to do a inorder 

traversal. So, we go it is left and now when we have one and inorder traversal of one 

consists of it is left child which is empty one and then it is right child is empty. So, this 

produces one now I come back and I list out the node two and now I do an inorder 

traversal of it is right. So, I have got 1, 2, 4. So, this completes inorder traversal of the 

left subtree of 5. Now, I list out 5 itself and then I do an inorder traversal of 8 and 9 since 

8 has no left child the next values are comes out as a 8 itself and then 9.  



So, what you can see is that since we print out the values on the left child before the 

current value when the value is the right child after the current value with respect to the 

current value all these values are sorted because that is how the search key is organized 

and since is recursively done at every level down the final output of a inorder traversal of 

a search tree is always a sorted list. This is one way to ensure that the tree that you have 

constructed is sorted you do an inorder sub traversal that the key of constructed is a 

search tree you do an inorder traversal and ensure that the output that you get from this 

traversal is a sorted list. 
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As we mentioned that the beginning of this lecture, one of the main reasons to construct 

a search tree is to be able to do something like binary search and this is with dynamic 

data. So, we will also have insert and delete as operations, but the main fundamental 

operation is find.  

Like in binary search we start at the root. So, you imagine that this is the middle of an list 

of an array, for example, we look at this element if we have found it it is fine if we have 

not found it then we need to look in the appropriate sub tree since the search tree is 

organized with the left values smaller in the right value is bigger we go left if the value 

we were searching for is smaller than the current node and we go right if it is larger than 

the current node. So, this is very much a generalization of binary search in the tree. 



(Refer Slide Time: 09:04) 

 

Here is the code, it is very straight forward we want to find value of v remember, this is 

this python syntax. We always have the self as the first parameter to our function. So, if 

the current node is empty we cannot find it.  

So, it is v return false if we do find v then we return true and if we do not find v then if it 

is. This is not, it should be self if it is smaller than this current value then we go left and 

search for it otherwise we go right and search for it. So, this is exactly a binary search 

and it is a very simple recursive thing which exactly follows a structure of a search tree. 
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It will be useful later on to be able to find the smallest and largest values in a search tree. 

So, notice that as we keep going left we go smaller and smaller. So, where is the 

minimum value in a tree it is along the smaller left most path. So, if I have to go from the 

left most path and if I cannot go any further then I find it. So, we will always apply this 

function only when tree is non empty. Let us assume that we are looking for the 

minimum value in a non empty tree. Well, we find the left most path. 

If I cannot go further left then I found it. In this case, if I reach one since I cannot go 

further one is the minimum value otherwise if I can go left then I will go one more step. 

So, if we start this, for instance, say 5 it will say that 5 have left a subtree. So, the 

minimum value below 5 is the minimum value below it is left child. So, you go to three 

now we say that the minimum value below three is the minimum value below it is left 

child. So, you go to one then we say that the minimum value is the minimum value at 1 

because there is no left child and therefore, we get the answer 1 and it is indeed 2 that 

anything below that is only on the right that is 2. 
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Dually, one can find the maximum value by following the right most path right, if the 

right is none then we return the current value otherwise we recursively look for the 

maximum value to our right.  

In this case we start at 5, we go down to 7, then we go down to 9 and since there is no 

further right path from 9, 9 must be the maximum value in this tree. We will come back 



later on and see why we need this minimum and maximum value, but any way it is 

useful thing to be able to find and it is very easy to do, again using the structure of the 

binary search. 
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So, one of the things we said is that we need to be able to dynamically add and remove 

elements from the tree. The first function that we look for is insert, how do we insert an 

element in the tree well it is quite easy we look for it if we do not find it then the place 

where are search concludes is exactly where it should have been. So, we insert it at that 

point right.  

For example, supposing we try to insert 21 in this tree, when we look at 52 and when go 

left when we go left then we come to 16 again and we go right then we come to 21, 28 

and we find that we have exhausted this path and there is no possible 21 in this tree, but 

had we found 21 it should be to the left of 28. So, we insert it there. So, we look for 

where it should find it and if we do not find it we insert it with the appropriate place. 

Similarly, you can start and look for 65. So, 65 is bigger than 52. So, we go over right 

then it is smaller than 74. So, we go left, but there is nothing to the left 74. So, we out it 

to the left of 74. 

Now, insert will not put in a value that is already there because we have no duplicates. 

So, if now we try to for instance insert ninety one then we go right from 52 we go right 



from 74 and now we find that 91 is already present in the tree. So, insert ninety one has 

no effect on this tree. 
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This is a very simple modification of the find algorithm. So, we keep searching and if we 

reach the leaf node then we come to an empty node right. If you find that we have 

reached an empty node then we do the equivalent of creating a new node here we set this 

value to be v and we create a new frontier below by adding two empty nodes in the left 

and right rather than just having none.  

On the other hand, if we find the value in the tree we do nothing and if we do not find the 

value then we just use the search tree property and try to insert either on the left or on the 

right as appropriate. 
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How about delete. So, delete is a little bit more complicated than insert. So, basically 

whenever we find v in the tree and that can only be one v remember this is not like 

deleting from the list that we had before where we were removing the first copy of v in a 

search tree we have only one copy of every value if at all. If we find v we must delete it.  

So, we search for v as usual now if the node that we are searching for is a leaf then we 

are done we just delete it and nothing happens, if it has only one child then we can 

promote child. If it has two children we have a hole we have a leaf we have a node which 

we have to remove value, but we have values on both sides below it and now we will use 

this maximum function maxval or minval in order to do the work. Let us just see how 

this works through some examples right. So, supposing we first delete 65 then we first 

search for 65, we find it since it is a leaf then we are in this case the first case we just I 

have to remove this leaf and we are done. 
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Now, we try to delete 74. So, we find 74 and we find that it has only one child. So, if it 

has only one child then we move this out then we can just effectively short circuit this 

link and move this whole thing up and make 52 point to 91 directly. So, we are in this 

second case this is what it means to promote the child. So, the deleted node has only one 

child we can bypass the child and directly connect the parent of the deleted node to the 

one child of the deleted node. So, this will result in 91 moving up there. 
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Now, finally, we have the difficult case which is you want to delete a node which is in 

the middle of the tree, in case this case 37. So, we come to 37 and we want to remove 

this. Now, if we remove this there will be a vacancy now, what do we fill the vacancy 

again and how do we adjust the shape of the tree. So, we look to the left and find the 

maximum value remember that everything to the left is smaller than 37 and everything to 

the right is bigger than 37. 

So, among the left nodes we take the biggest one and we move it there then everything to 

the left will remain smaller than that node you could also do it the other way and take the 

smallest values from the right, but you would not do that you will stick to taking the 

maximum value from the left. We go to the left and find the maximum value is 28. So, 

basically we have taken this 28 and moving it up there 

Now, we should not have two copies of 28. So, we need to remove this 28. So, how do 

we do that well within this subtree, we delete 28 now this looks like a problem because 

in order to delete a node we are again deleting a node, remember that the way that the 

maximum value was defined it is along with the right most path. So, the right most path 

will either end in leaf or it will end in the node like this which has only one child and we 

know that when we have a leaf or only one child we are in the first two cases which we 

can handle without doing this maximum value that. So, we can just walked out remove 

the 28 and promote the 21. So, this is exactly how delete works. 
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We can now look at the function. If there is no value v then we just return the easy cases 

are when we do not find we are the current thing. So, if it is less than the current value 

then we go to the left and delete if it is bigger than the current value we go to the right 

and delete. So, the hard work comes then we actually find v at the current value. If this is 

a leaf now we have not shown, how write this function if this is a leaf this means that it 

has left and right child both as empty nodes if this is a leaf then we will make it empty 

we will see how we do this in a minute I will just show you the code for this.  

So, if this is a leaf we delete it right this is the first case is simple case this is the leaf we 

just delete it and we make this node empty if on the other hand it has only one child, if. 

So, actually in this case if the left is empty then we just promote the right and if it is left 

is not empty then we will copy the maximum value from the left and delete the 

maximum value on the left. 

We need to just see these two functions here make empty and copy right. So, make 

empty just says convert this into an empty node an empty node is one which all three 

fields are none. So, we will just say self dot value is none self dot left is none self dot 

right is none. If it had an empty node hanging of it those empty nodes are now 

disconnected from return.  

This is this make empty function and now the copy right function just takes everything 

from the right and moves it up. It takes the right value and makes it the current value the 

left value right dot left and makes with the left. So, we just take basically this node and 

copy these values one by one here. So, we copy right dot value to the current value right 

dot left to the current left right dot right to the current right. 
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So, how much time do all these take well if you examined the thing carefully you would 

realize that in every case we are just walking down one path searching for the value and 

along that path either we find it or we go down to the end and then we stop. So, the 

complexity of every operation is actually written by the height of the tree if we have a 

balanced tree a balanced tree is one where you can define that each time we come to a 

node the left in the right chair roughly have the same size. 

If we have a balanced tree then it is not difficult to see then we have height logarithmic 

in an this is like a heap a heap is an example of a balanced tree now search tree will not 

be has nicely subset of heap because we will have some holes, but we will have a 

logarithmic height in general we will not explain how to balance a tree in this particular 

course we can look it up you can look for topic called AVL trees which is one variety of 

balanced trees which are balanced by rotating sub trees. So, it is possible while doing 

insert and delete to maintain balance at every node and ensure that all these operations 

are logarithmic. 

Let us just look at the code directly and execute it and convenience ourselves that all the 

things that we wrote here actually work as intended. 
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Here we have a python code for the class tree that we showed in the lectures. So, we are 

just added a comment about how the empty node is organized and the leaves are 

organized. So, there is the constructor which sets up either an empty node or a leaf node 

with two empty children then we have isempty and iseleaf we check whether the current 

value is none or both the left and right children are empty, respectively. 

(Refer Slide Time: 20:26) 

 



Then we have this function makeempty which converts the leaf to an empty node 

copyright, copies a right child values to the current node and then we have the basic 

recursive functions. 
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So, we start with find. So, find is the one which is equivalent to binary search then insert 

is like find and there it where it does not find it tries to insert. 
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And finally, we have maxval which we made for delete and delete now when we reach 

the situation where we are found a value to that needs to be deleted if it is a leaf then we 



remove the leaf and make it empty if it is the left child is empty then we copy the right 

child up otherwise we delete the maximum from the left and promote that maximum 

value to a current. 
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Finally, we have this inorder traversal which generates a sorted list from the tree values 

and the str function just displays the inorder traversal. 
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Now if we go to this then we can for instance import this package set up an empty tree 

and then put in some random values it is important not put in sorted order, otherwise a 



sorted tree if you just insert one at a time it will just generate one long path. So, I am just 

trying to put it in some random order. We insert into the tree all these values and now we 

are print t give me a sorted version of this. So, 1, 2, 3, 4, I can now insert more values. 

So, I can for random insert 17 and verify that now 17 is there before 14 and 18 and I can 

keep doing this, I can insert I can even insert values in between like 4.5 because I have 

not in specified the integers right. So, it puts a between 4 and 5 and so on and now I can 

delete, for example if I delete 3 then I find that I have 1, 2, 4. If I delete, for example, 14 

then I have no longer 14 between 7 and 17 and so on. 
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This incrementation definitely works, although we have a balanced it. If we do not 

balance it then the danger is that if we keep inserting and sorted sequence then we keep 

inserting larger values it keeps adding on the right child. So, the tree actually looks like a 

long path right. Then it becomes like a sorted list and every insert will take order n time, 

but if we do have rotations built in as we do, we could be using an AVL tree then we can 

ensure that the tree never grows to height more than log n.  

So, all the operations insert, find and delete they always be logarithmic respect to the 

number of values currently being maintained. 


