

Programming, Data Structures and Algorithms in Python

Prof. Madhavan Mukund

Department of Computer Science and Engineering

Indian Institute of Technology, Madras

Week - 01

Lecture - 04

Downloading and installing Python

For our final lecture of this first week, we will see how to actually use Python on our

system.

(Refer Slide Time: 00:10)

Python is a programming language, which is available on all platforms. So, whether you

are working on Linux or on a Mac or on Windows, you will be able to find a version of

python that works on your system. One of the small complications with python is that

there are two flavors or two versions of python, which are commonly found. So, there is

an older version called python 2.7, and there is a newer version called python 3. Python 3

is a one that is being actively developed, python 2.7 is more or less a static version and

currently python 3 has the version 3.5.2 or something like that. So, there is not much

difference whether you are using 3.5 or 3.4, but there are difference between 2.7 and 3.

And for the purpose of this course, we will work with python 3.

(Refer Slide Time: 01:06)

What is the difference between these two versions? Well, python began with a few

features and it kept developing into more versatile programming language. So, python

went through much iteration and python 2.7 was a version that was reached when the

developers of python decided that there should kind of make a clean start. And some of

the new features which had been added in and ad hoc way on to the language should be

integrated in a better way which makes it a more robust programming language.

Python 3 essentially is a modern version of python, which incorporates features that

where added on to python as it group in a way that makes it more consistent and more

easy to use, but as often happens a lot of people had already been using python, and

python 2.7 has a lot of software written using that version. In particular a lot of software

that people find convenient to use such as scientific and statistical libraries of functions

where they do not have to use it themselves, they'll just invoke these libraries are still

written using python 2.7. And if you run it from python 3 sometimes these functions do

not work as they are expected.

So, this has forced python 2.7 to live on. Eventually we hope that somebody will take the

effort to move python 2.7 libraries to python 3. And of course, newer code is largely

being developed on python 3, but you should remember that when somebody says that

they are using python they could be talking about 2.7 and not 3, and you have to make

adjustments.

For the purpose of the introductory material that we will be doing in the course, there is

almost no change between python 3 and python 2.7; however, there are some features

that we will see which are slightly different in 2.7 and we will explore them in 3, and I

will try to highlight these differences as we go long. But going forward in python 3 is the

current version and it has been the current version for some years now at least for 4 or 5

years. It is definitely the language, which is going to dominate in the future, so it is better

that you start with a new version then go back to the old version.

(Refer Slide Time: 03:23)

As far as this course is concerned, any version of python 3 should be fine. The latest

version as I said is some 3.5.x, where I thing x is 2, but if you do not have 3.5, but you

have 3.4 or 3.3 do not bother everything should work fine. But if you are interested, you

can install the latest, latest version. If you are using Linux, it should normally be there by

default because many Linux utilities require python and so python should be on you are

system, but it could be that the utility is use python 2.7. So, make sure that you install

python 3. You can use the package manager to do this. Now if you are using a MAC or

you are using Windows then python may or may not be installed especially python 3 may

not be installed on your system.

There is the URL given here. If you search on Google, you will find it. Just search for

python 3.5 install or download and you will get to this URL. So, www.python.org

downloads release python 350. 350, is really refer into 3.5.0. So, actually the current

version as I said is not 3.5.0, but 3.5.2. So, you will find instructions there - please

download the version that is appropriate for your system and install it. These are

designed to be fairly self-explanatory install files; if you have a problem please search

online for help with the problem you are facing or ask someone around you. It is not the

purpose of this course to spend a lot of time telling you how to install software. So, I

hope you are able to do this, so that we can get ahead with the actual programming part.

(Refer Slide Time: 05:05)

One more thing to keep in mind, if you are familiar with other programming languages,

is the distinction between interpreters and compilers. So, the main difficultly is that

programming languages like python or C or C++ or Java are written for us to understand

and write instructions on. So, these are somewhat high level instructions. In the other

hand, computers need low level instructions. So, when we talk about names and values

like i, j or we talk about list, the underline computer may not be able to directly analyze

these things, so we need a translation. If you remember the very first lecture, we talked

about arranging chairs. So, we said arrange the chairs as a high level thing, and we said

put 80 chars in 10 in 8 rows, 10 each right.

We said that they could be a difference in the level of detail in which you give

instructions and this is precisely what happens. In order to execute something so called

executable file that we come across we something which is return at a level that the

machine can understand. Whereas, the programs that we are going to explore on this

course and which all programmers normally work with are at a higher level, which

cannot be directly understood by computer, so we have to bridge this gaps somehow.

A compiler is a program which takes a high level programming language and translates

programs on that language to a machine level programming language. So, it takes the

high level program in python, if in not python, in C or C++ or Java or something and

produces something with directly a machine can execute. In the other hand, the other

way of dealing with the high-level language is to interpret it. So, an interpreter in

normally English is somebody who stands between people talking different languages

and translates back and forth.

An interpreter is a program which you interact with, and you feed the interpreter

instructions in your language, in this case python; and the interpreter internally figures

out how to run them on the underline machine. So, whether you are running it on

Windows, or Mac, or Linux interpreter guarantees that the answer that you see at the

high level looks approximately the same independent of the actual platform on which

you are running it. So, python is by and large an interpreted language and we should be

aware of this fact.

(Refer Slide Time: 07:31)

We use python typically in the following way; we first run the interpreters. So, remember

interpreter is the program. We first invoke the interpreter; and when the interpreter is

running, we pass python commands to the interpreter to be executed. The nice thing

about dealing with an interpreter is that you can play with it like you play with a

calculator; you can feed it commands and see what it does, so it is very interactive. Of

course, it is tedious, if you have to type in large programs, so there is a way to load a

program which has been written already using a standard text editor and loading it from a

file. So, what I have shown below in green is so this is what we will see in a minute is

the prompt that the interpreter shows you.

When you enter the interpreter, it will ask you to execute a command and this is a

command that you provide the interpreter. It says. So, I have stored. I have a file called

say file name dot p y typically to indicate it is a python program from that file import all

the definitions and functions and code that is written there. So, this will tell the

interpreter to take everything that is written in that code and put it into its current

environment, so that those functions can be used. So, these things will become a little

clear and then in the demo that I am just going to show you and then you can play around

with this. And then the next week, we will get into the real details about exactly what

goes into a python program.

(Refer Slide Time: 09:16)

Here is a window showing the terminal which on Windows would be like a command

prompt and using unique like shell. So, if I say ls, it shows me the list of files in my

current area. And all this files with extension dot p y are actually python programs. In

this, I invoke the python interpreter by saying python 3.5 because that is the version

which I am using. If I invoke it, it will produce some messages telling me what type of

function system I'm on. So, it tells me that I am using for instance 3.5.2 and it has may

that it is a fairly recent version, it tells me that it is on a Apple and blah blah blah, but

what is important is then produces a prompt place where I can enter commands and this

is signified by these three greater times.

Now, at the python interpreter prompt, you can directly start writing things. So, for

example, you can say i is equal to 5. What it says as a take a name i assign to value of 5.

Now if I type i, it tells me that the value is 5; if I type an expression like i plus 1, it tells

me that is 6. So, you can use it as a calculator. So, you can do simple arithmetic if you

want. So, you can keep interacting with it. Now, you can also define functions remember

how we defined a function, we use def, use a function name and so on. So, we can say

for example, def twice x. This is the function twice, this takes the single argument x. And

as you might expect I would like to return two times x.

Now a python uses as we mentioned in one of the earlier lectures, indentation in order to

specify that something is a part of something else. So, the definition consists of a bunch

of it steps. So, I must tell it that these bunches of steps belong to this definition by

indenting it; it does not matter how you indent it as long as you use the same indentation

uniformly. If you are using two spaces, use two spaces use a tab, but do not mix up the

number of spaces and do not mix up tabs and spaces, because this gets you confuse the

error messages form python. So, let us use two spaces.

Let us to the sake of illustration create a new name y, and say y is two times x. Now it is

still continuing to ask me for the definitions, so the prompt has change to dot dot dot.

Now I must induct it a same way and say return y. So, what I have done is I say this

function takes in value x, computes two times x, and stores it in the name y, and returns

the value of the name y, right. Now, when I am done with this, I give a blank line and this

function is now defined. Now, twice 7 makes sense, what twice 932 will also make sense

right. So, python is very convenient in that you can have few define functions as you go

along on the fly.

Now, we could also define our gcd right here, but as you might expect sometimes a

function is too complicated to typing without make in a mistake, and secondly, you

might want to play around with the function and change it and not have to keep typing it

again and again. For this, what we need to do is first type the function in to a file and

then load the file here. Let us get out of this. So, one way to get out of this is to type quit

the brackets.

(Refer Slide Time: 12:49)

And then you get back to this prompt which is dollar which is the outside terminal or the

command prompt. So, I have actually already created something. Let us start with, so I

use an editor called emacs, you can use any takes editor if you are using Windows, you

can use notepad, if you are using and Linux, you can use emacs or vi or you can use

some simpler editor like gedit or k, anything that is comfortable, but it should just be a

text editor it should not do any formatting, do not use word processes like you know

office or something like that. You something we just manipulates text files.

(Refer Slide Time: 13:27)

If I look at gcd 1 dot py, so one nice thing what emac is it shows me colors to indicate

certain things. So, def this is the very first gcd program we wrote, which takes computes

the list f m then the list f m then the list cf, and then it returns the last elements in cf. So,

this is the first version of gcd. So, this is the exactly the code we wrote before. The point

to remember is that I have made sure that all these indentations are at the same number

of spaces in. So, this is something to remember. Now, you typing something like this

right then you save it and exit.

(Refer Slide Time: 14:03)

Now you go back to your python, and you save from that file gcd 1 import star what this

means is take the file gcd1 dot py and load all the functions which had defined there and

make them available to me here. Now, if I say gcd of 7 comma let us for example, 14 and

63 for instance, it tells me the gcd 7. Now if you take some large number like 9999 and

10000 then it takes, so may be one more digit let us see, you will notice that it is not

giving me an answer and then it gives me answer. So, it this is just to illustrate that this

was the slow gcd right. So, see how much time it took.

It has the visible gap of a few seconds before it produces the answer. And this is the

illustration that this is not a very efficiency gcd. So, one of the problems with this python

interpreter which I will see if we can solve is that if I have already loaded one file then it

is safer to exit and then reload other file rather than to update the file.

(Refer Slide Time: 15:25)

Let me reload for instance the last version of Euclid's thing, which we wrote which is the

reminder version.

(Refer Slide Time: 15:32)

It says that if m less then n exchange the values if then the second line here says that if

the reminder of m divided by n is 0 that is n is a divisor of m then return n otherwise

replace the g c d call by the call to n and its reminder. So, this we also had a version of

this where we return to the while loop. Let us use the while version. The while version

says that so long as the reminder is not 0, we keep updating m and n to n and the

reminder, and finally you return the value of n.

(Refer Slide Time: 16:13)

I am going to take this particular thing and load it into python. So, again I first invoke the

interpreter python then I say from gcdeuclid2a import star. Now I am going to give that

same large value that we saw before and which I think was say 9999999 and 1000000.

And now you see, you get an instant answer. In fact, you will see that if I even if I give it

several more digits, it should hope fully work fast. So, there is a dramatic improvement

in speed which is even visible in this simple example, if we replace the naive idea by a

clever idea.

The power of algorithm is to actually make a program which would otherwise be

hopelessly slow work at a speed which is acceptable to you. Do a load python on your

system, invoke the python interpreter and play around with the code that we have seen in

this particular week's thing, make errors see what python tells you when you import a file

which has errors. For instance now if I try to ah invoke a function which does not exists

like, if I use a function which I have not defined and which python does not understand

then it will give me a mistake like this. It will say loop is not defined. If I write

something strange like 7 less than greater than 5, then it will say that this is invalid

syntax.

The interpreter will look for an expression if the expressions do not make sense then it is

going to complain. And sometimes the error messages are easy to understand, sometime

they are less easy to understand; as we go along we will look into this. But, the purpose

of the interpreter is to either execute what you have given it or tell you that what you

have written is somehow not executable and explains why. So, do play around with it and

a get some familiarity because this is what going to be our bread and butter as we go

along.

(Refer Slide Time: 18:18)

We are going to be looking at some specific features of python in this course, but you

may find as we go along that there is something that you do not understand or something

new that you would like to try out your own. So, it is always a good idea to have access

to other resources. The python online documentation is actually an excellent place to

look for details about python and in particular, there is a very readable tutorial;

especially, if you already have some familiarity with programming the python is

probably the best place to start learning python for yourself. So, here is a URL,

docs.python.org/3 this is for python 3 tutorial index dot html. If you just go to

docs.python.org/3, you will find there are also more detailed reference manuals and so

on, which you might need at a later stage.

Do keep this as one of the places that you look when you have difficulties. And there are

two books which probably useful to understand python beyond what is covered in the

lectures if you feel that something is not clear. So, there is this book called dive into

python which is adapted for python 3. And there is book called think python which is

about generally about computational thinking in the context of python. Both of these

have the nice advantage that they are available online, so you do not have a buy

anything; you can just browse them through your browser on the net.

(Refer Slide Time: 19:41)

Before we leave you for this week, remember that learning programming is an activity;

you cannot learn programming theoretically. You have to write and execute code to

appreciate the subject. You have to make mistakes; learn from your mistakes; figure out

what works, what does not work and only then will you get a true appreciation for

programming. Reason we are going with python is because python has a very simple

syntax compared to other programming languages. We have already without formally

learning python, seen some fairly sophisticated programs for gcd and hopefully you have

understood them even if you cannot generate them. It is not very difficult to explain what

a python program is doing with a little bit of understanding.

Do take the time to practice the examples that we had seen this time. We will be giving

programming exercises as we go along; and unless you do these exercises and become

somewhat handy at manipulating python yourself, you will never truly learn both

programming and python. The other thing to remember is that once you have learned one

language, even though the features and the syntax vary from language to language, it is

very easy to pick up a another language, because all of programming has at it is base

very similar principles.

Although the syntax may vary, the ideas do not. The ideas are eventually what write the

program, but to be a fluent speaker of a programming language, you must practice it. So,

do try.

