
Programming, Data Structures and Algorithms in Python

Prof. Madhavan Mukund

Department of Computer Science and Engineering

Indian Institute of Technology, Madras

Week - 07

Lecture - 02

User Defined Lists

(Refer Slide Time: 00:03)

Now that we have seen the basics about how to define classes and objects, let us define

an interesting data structure.

Suppose we want to implement our own version of the list, a list is basically a sequence

of nodes and each node in the sequence stores a value and points to the next node. So, in

order to go through the list we have to start at the beginning and walk following these

pointers till we reach the last pointer which points to nothing. We have a list of the form

v1, v2, v3, v4 in python notation. Then this is how we would imagine it is actually

represented. There are 4 nodes. The list l itself which we have set up points to the first

node in this list, v 1 points to v 2, v 2 points to v 3 and v 3 points to be v 4. The final

node points to nothing and that indicates we have reached the end of the list.

In this representation what would the empty list look like well it is natural to assume that

the empty list will consist of a single node which has both the value and the next node

pointers set to none, whereas for instance the singleton would be a single node in which

we have the value v 1 and the next set to none. So, this is the convention that we shall

follow for our representation of a list. So, notice that unless we have an empty list with a

single node none, none no other node in a list can have value none, right. This is

something that we will implicitly assume and use that checking for the value none will

tell us it is an empty list and we will never find none in the middle of a list.

We distinguish between a singleton and an empty list purely based on the value. Both of

them consist of a single node. Now the reason that we have to do this is because actually

python does not allow us to create an empty list if we say something like l is equal to

none and we want this to denote the empty list the problem is that none does not have a

type as far as python’s value system is concerned. So, once we have none, we cannot

apply the object functions we are going to create for this list type. So, we need to create

something which is empty of the correct type. So, we need to create at least 1 node and

that is why we need to use this kind of representation in order to denote an empty list.

(Refer Slide Time: 02:26)

Here is the basic class that we are going to use, it is a class node. So, inside each node we

have 2 attributes value and next as we said and remember that self is always used with

every function to denote the object under consideration. We will use this default scheme

that if we do not say anything we create an empty list. The init value, this should be init

val.

The initial value is by default none unless I provide you an initial value in which case

you create a list with that value and because of our assumption about empty list all we

need to do to check whether a list is empty is to check whether the value at the initial

node is none or not. We just take the list we are pointing to and look at the very first

value which will be self dot value and ask whether it is none. If it is none, it is empty. If

it is not none, it is not empty.

Here is a typical thing. We say l1 is equal to node; this creates an empty list because it is

not provided any value. So, the default initial value is going to be none. If I say l2 is

equal to node 5 this will create a node with the value 5. It will create the singleton list

that we would normally write in python like this. If I ask whether l1 is empty, the answer

will be true. If I ask whether l2 is empty, the answer will be false because self dot value

is not none.

(Refer Slide Time: 03:50)

Now, once we have a list what we would like to do is manipulate it. The first thing that

we might want to do is add a value at the end of the list. If the list is already empty, then

we have a single node which has value none and we want to make it a singleton node, a

singleton list with value v. So, we want to go from this to this, remember that in a

singleton node we just have instead of none we have the value v over here so that is all

we need to do. We need to just replace the none by v, if we are at the last element of the

list and we know that we are at the last element of the list because the next value is none

then what we need to do is create a new value.

We walk to the end of the list and then we reach none. Now, we create a new element

here with the value v and we make this element point to this, we create a new element

with the node v and set the next field of the last node to point to the new node and if this

is not the last value then well we can just recursively say to the rest of the list treat this

as a new list starting at the next element, take the next element and recursively append v

to that.

(Refer Slide Time: 05:05)

This gives us a very simple recursive definition of append. So, we take append and we

want to append v to this list. If it is empty, then we just set the value to v. So, this just

converts the single node with value none to the single node with value of v, otherwise if

we are at the last node that is self dot next is none then we create a new node with the

value v and we set our next pointer to point at the new node, remember when we create a

new node the new node automatically is created by our init function with next none.

We would now create a new node which looks like v and none and we will set our next

pointer to point to it and the final thing is that if it is not none then we have something

else after us. So, we go that next element self dot next and with respect to that next

element we reapply the append function with the value v, this is the recursive call.

We have been abundantly careful in making sure that this is parsable. So, we have put

this bracket saying that we take the object self dot next and apply append to that actually

python will do this correctly. We need not actually put the bracket, we can just write self

dot next dot append v and python will correctly bracket this as self dot next dot append.

So, this dot is taken from the right.

(Refer Slide Time: 06:23)

Now, instead of recursively going to the end of the list we can also scan the end of the

list till the end iteratively. We can write a loop which keeps traversing these pointers until

we reach a node whose next is none. If the list is empty as before we replace the value

none by v, otherwise we scan the list till we reach the last element and then once we

reach the last element as in the earlier case we create a new node and make the last

element point to it.

(Refer Slide Time: 06:53)

This gives us an append which is iterative. So, we call it append i just to indicate that it is

iterative. The first part is the same if the current list is empty then we just set the value to

be v and we return, otherwise we now want to walk down the list. We set up a temporary

pointer to point to the current node that we are at and so long as the next is none we keep

shifting temp to the next value. So, we just write a loop which says while temp dot next

is not none just keep going from temp to temp dot next.

So, just keep shifting temp. Finally when we come out of this loop at this point we know

that temp dot next is none. This is the condition under which we exit the loop. We have

reached, the node temp is now pointing to the last node in the current list. At this point

we do exactly what we did in the recursive case we create a new node with a value v and

we make this last node point to this new node. So, we reset next of temp from none to the

new node.

(Refer Slide Time: 07:57)

What if we do not want to append, but we want to insert. Now it looks normally that

insert should be easier that append, but actually insert is a bit tricky. So, by insert we

mean that we want to put a value at the beginning. We want to put a node here which has

v and make this pointer.

This is what we want to do now. The problem with this really is that after we create a

new node we cannot make this point here and this point here there is no problem in

making the new node point to v 1, but if we reassign the value of l or inside a object if

we reassign the value of self then this creates a completely different object. We saw this

when we were looking at how parameters are passed and immutable value are passed.

We said that if we pass a mutable value to a function so long as we do not reassign that

thing any mutation inside the function will be reflected outside the function, but if we

reassign to the list or dictionary inside the function we get a new copy and then after that

any change we make is off. So same way if we reassign l or self to point to a new node

then we will lose the connection between the parameter we passed to the function and the

parameter we get back. So, we must be careful not to make l point to this thing. We

cannot change where l points to. So, how do we get around this problem? We have

created a new node, we want to make l point to it, but we are not allowed to do so,

because if we do so, then python will disconnect the new l from the old l. So, there is a

very simple trick. What we do is we do not change the identity of the node, we change

what it contains. So, we know now that v 1 is the old first node and v is a new first node,

but we cannot make l point to the new first node, so we exchange the values. So, what

we do is we replace v 1 by v and v by v 1.

Now, the values are swapped and we also have to do a similar thing for what is pointing

where. So, l is now pointing to v as the first node, but now we have bypassed v 1 which

is a mistake. We must now make the first node point to the new node and the new node

point to the old second node. So, by doing this kind of plumbing what we have ensured is

that the new list looks like we have inserted v before the v 1, but actually we have

inserted a new node in between v and v 2 and we have just changed the links to make it

appear as though the new node is second and not first.

(Refer Slide Time: 10:22)

Here is the code for insert. As usual, if you have an empty list insert is easy. We just have

to change none to v. So, insert and append both behave the same way with an empty list.

We go from the empty list to the list v. It does not matter whether you are inserting or

appending. Otherwise, we create this new node and then we do this swapping of values

between the current node that self is pointing to, that is the head of the list and the new

node.

We exchange the values; we set self dot value to new node dot value and simultaneously

new node dot value to self dot value using this python simultaneous assignment. And

similarly we take self dot next which was pointing to the next node and make it point to

the new node and the new node instead should point to what we were pointing to earlier.

So, new node dot next is self dot next. This is how we insert and insert as we saw is a

little bit more complicated than append because of having to handle the initial way in

which l points to the list or self points to the list.

(Refer Slide Time: 11:19)

What if we want to delete a node? How do we specify to delete a node? Well we specify

it by a value, but let us just suppose you want to delete say the second node in this list.

Now, how would we delete it? Well again just as we did insert we would do some re

plumbing or re connection. So, we take the node that we want to delete and we just make

the link that points to v 2 bypass it. So, we take the link from v 1 and make it directly

point to v 3. So, in essense, all that delete requires us to do is to reassign the pointer from

before the deleted node with the pointer after the deleted node. It actually does not

physically remove that object from memory, but it just makes it inaccessible from the

link end.

We provide a value v and we want to remove the first occurrence of v. We scan the list

for the first v. Now notice that in this plumbing procedure we need to be at v 1 in order to

make it point to v3. If we wanted to delete the next node then we are in good shape

because we can take the next dot next and assign it to the current next. So, we should

look 1 step ahead. If you are already at v 2 then we have gone past v 1 and we cannot go

back to v 1, easily the way we have set up our list because it only goes forward; we

cannot go back to v 1 and change it.

(Refer Slide Time: 12:38)

What we will actually do is we will scan by looking at the next value. If the self dot next

dot value is v that is if the next node is to be deleted then we bypass it by saying the

current node’s next is not the next node that we had, but the next node’s next. So, self dot

next is reassigned to self dot next dot next - bypass the next node. As before like with

insert the only thing we have to be careful about is if we have to delete actually the first

value in the list.

(Refer Slide Time: 13:12)

If you want to delete the first value in the list exactly like we had with insert the natural

thing would be to, now say that l should point to the second value in the list, but we

cannot point l there because if we reassign the node that l points to then it will create a

new object and it will break the connection between the parameter we passed and the

thing we get back. We use the same trick. What we do is we copy the value v 2 from the

next node and then... So we just copy this value from here to here and then we delete v 2.

So, we wanted to delete the first node, we are not allowed to delete the first node because

we cannot change what l points to. So, instead we take the value in the second node

which was v 2, copy it here and then pretend we deleted v 2 by making the first node

point to the third.

(Refer Slide Time: 14:07)

Here is a part of the delete function. First of all, if we were looking for v and then we do

not find it. So, sorry in this code, it is called x. So, this is deleting value x if you want. If

we say that the list is empty, then obviously, we cannot delete it because delete says if

there is a value of this... node with value x then delete it. If it is empty we do nothing;

otherwise if this self dot value is x the first node is to be deleted. Then if there is only 1

node, then we are going from x to empty, this is easy. If there is no next node right, if we

have only a singleton then we just set the value to be none and we are done.

This is the easy case, but if it is not the first node, I mean, it is the first node and this is

not also the only node in the list then what we do is we do what we said before. We copy

the next value. We pretend that we are deleting the second node. So, we copy the second

value into the first value and we delete the next node by bypassing. This is that bypass.

This is part of the function; this is the tricky part which is how do you delete the first

value. If it is only 1 value, make it none; if not, bypass the second node by copying the

second node to the first node.

(Refer Slide Time: 15:24)

And if this is not the case then we just walk down and find the first x to delete. We start

as… this is like our iterative append. We start pointing to self and so long as we have not

reached the end of the list if we find the next value is x and then we bypass it and if you

reach the end of the list, we have not found it, we do nothing, we just have to return. In

this case it is not like append where when we reached the end of the list we have to

append here, if we do not find a next by the time we reach the end of the list, then there’s

nothing to be done.

(Refer Slide Time: 15:54)

So, just for completeness, here is the full function, this was the first slide we saw which

is the case when the value to be deleted is in the first node and this is the second case

when we walk down the list looking for the first x to delete.

(Refer Slide Time: 16:09)

Just like append can be done both iteratively and recursively, we can also delete

recursively which is if it is the first node we handle it in a special way by moving the

second value to the first and bypassing it as we did before. Otherwise we just point to the

next node and ask the next node, the list starting at the next node, what is normally called

the tail of the list, to delete v from itself. The only thing that we have to remember in this

is that if we reach the end of the list and we delete the last node. Supposing it turns out,

the value v to be deleted is here. So, we come here and then we delete it. What we will

end up with is finding a value none, because when we delete it from here, it is as though

we take a singleton element v and delete v from a singleton and will create none none.

So, this is the base case, if we are recursively deleting as we go whenever we delete from

the last node, it is as though we are deleting from a singleton list with value v and we are

not allowed to create a value none at the end.

We have to just check when we create the next thing if we delete the next value and it is

value becomes none then we should remove that item from the list. So, this is the only

tricky thing that when we do a recursive delete you have to be careful after we delete you

have to check what is happening.

(Refer Slide Time: 17:32)

This part is the earlier part and now this is recursive part. So, recursive part is fairly

straight forward. So the first part is when we delete the first element from a list, but the

recursive part we check if self dot next is equal to none then we delete recursively that is

fine. So, this is the delete call.

Now, after the delete is completed we check whether the next value has actually become

none. Have we actually ended up at the last node and deleted the last node? If so, then

we remove it, this we can either write self dot next is equal to self dot next dot next or we

could even just write self dot next is equal to none which is probably a cleaner way of

saying it because it can only happen at the last node. So, you make this node the last

node. Remember if the next node is none, it’s next must also be none.

This has the same effect: self dot next dot next must be none. So, we can also directly

assign self dot next is equal none and it would basically make this node the last node.

The only thing to remember about recursive delete is when we reach the end of the list

and we have deleted this list this becomes none then we should terminate the list here

and remove this node.

(Refer Slide Time: 18:34)

Finally let us write a function to print out a list. So, that we can keep track of what is

going on. We will print out a list by just constructing a python list out of it and then using

str on the python list. So, we want to create a python list from the values in our list. So,

we first initialize our list that we are going to produce for the empty list.

If our list, the node itself has nothing then we return the string value of the empty list,

otherwise we walk down the list and we keep adding each value using the append

function. So, we keep appending each value that we have stored in each node building up

a python list in this process and finally, we return whatever is the string value of that list.

Let us look at some python code and see how this actually works.

(Refer Slide Time: 19:24)

Here we have code which exactly reflects what we did in the slides. We have chosen to

use the recursive versions for both append and delete. So, we start with this initial

initialization which sets the initial value to be none by default or otherwise v as an

argument provided.

(Refer Slide Time: 19:44)

Then isempty just checks whether self dot value is none, we had written a more compact

form in the slide by saying just return self dot value equal to equal to none, but we have

expanded it out as an if statement here.

(Refer Slide Time: 19:56)

Now, this is the append function. So, append just checks if the current node is empty then

it puts it here otherwise it creates a new node... if we have reached the last node it creates

a new node and makes the last node point to the new node, otherwise it recursively

appends. Then we have this insert function here.

(Refer Slide Time: 20:29)

This insert function: again if it is empty then it just creates a singleton list otherwise it

creates a new node and exchanges the first node and the new node. So, this particular

thing here is the place where we create this, swap the pointers so that what self points to

does not change, but rather we create a reordering of the new node and the first node. So,

the new node becomes the second node and the first node now has the value that we just

added.

(Refer Slide Time: 21:02)

Finally, we can come down to the recursive delete. So, the recursive delete again says

that if the list is empty then we do nothing, otherwise if the first value is to be deleted

then we have to be careful and we have to make sure we delete the second value by

actually copying the second node into the first and finally, if that is not the case then we

just recursively delete, but then when we finish the delete, we have to delete the spurious

empty node at the end of the list in case we have accidentally created it.

So, these 2 lines here just make sure that we do not leave a spurious empty node at the

end of the list. And finally, we have this str function which creates a python list from our

values and eventually returns a string representation of that list.

(Refer Slide Time: 21:54)

If we now run this by importing, then we could say, for instance, that l is a list with value

0 and if we say print l then we will get this representation 0, we could for instance put

this in a loop and say for i in range 1 say 11, l dot append i.

(Refer Slide Time: 22:34)

And then if we at this point print l then we get 0 to 10 as before.

(Refer Slide Time: 22:40)

Now we say l dot delete 4 for instance and we print l then 4 is formed and so on. If we

say l dot insert 12 and print l, then 12 will begin. So, you can check that this works.

Notice that we are getting these empty brackets, this is the returned value. So, when we

wrote this return, we wrote with the empty argument. And then we get this empty tuple,

we can just write a return with nothing and then it would not display this funnier return

value, but what is actually important is that the internal representation of our list is

correctly changing with the functions that we have written.

