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In the 1970s Niklaus Wirth, the inventor of the programming language Pascal wrote a 

very influential book called Algorithms plus Data Structures equals Programs. So, the 

title emphasises the importance of both algorithms and data structures as components of 

effective programs.  

So far we have seen algorithms in some detail. So, now let us take a closer look at some 

specialized data structures. The data structures that we have seen that are built into 

python began with arrays and lists which are just sequences of values. We also saw 

dictionaries which are key value pairs and which are very useful for maintaining various 

types of information. Another built in data type that is available in python is the set.  
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Set is like a list except that you do not have duplicates. In python, one way of writing a 

set is to write a list with braces like this. So, here we have associated with the name 

colours a list of values red, black, red and green. Notice that in setting it up, we have 

repeated red, but because this is a set, the duplicate red would be automatically removed. 

So, if we print the name colours, we just get the list black, red and green. Now, since the 

empty brace notation is already used, for empty dictionary if we want to create an empty 

set, we have to call the set function as follows.  
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So, we say colours equal to set with no arguments. Like lists and other data structures, 

we can test membership using in. So, if in the previous lists set colours which had red, 

black and green, we ask whether black is in colours by using the word in, then, the return 

value is true. In general we can convert any list to a set using the set function.  

We saw that if we give no arguments to set you get an empty set, but if we give a list 

such as this 1, 3, 2, 1, 4 with duplicates and assign it to the name numbers, then because 

its a set the duplicate ones will be removed and we will get a list of, we will get a set of 

numbers 0, 1, 2, 3, 4. Notice again that the order in which the set is printed need not be 

the order in which you provided it. This is very much like a dictionary sets; are 

optimized for internal storage to make sure there are no duplicates etcetera.  

So, we should not assume anything about the order of elements in set. An interesting 

feature is that a string itself is essentially a list of characters. So, if we give a string to a 

set, then it produce the set function, then it produces a set which consists of individual 

letters from this set. So, if we give this string banana to the set function, then we get the 

three individual letters a, n and b without duplicates in the set.  
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So, as you would expect sets support basic operations like their counterpart in 

mathematics, so suppose we set up the odd numbers to be the set of all odd numbers 

between 1 and 11and the prime numbers to be the set of all prime numbers from 1 and 11 

between 2 and 11 using these set function as we saw before. If we write this vertical bar, 

then we can get the union of the two sets.  

So, odd union prime will be those elements which are either in odd or in prime. So, we 

get one from the top two from the bottom 3, 5, 7, 9, 11. We get all the elements in both 

the sets, but without any duplicates. If we ask for the intersection of two sets, we use 

ampersand to denote this. We get those which occur in both sets, those sets, those 

numbers which are both odd and prime and in this case 3, 5, 7 and 11.  

Notice again that the order in which these numbers are printed may be arbitrary. Set 

difference asks for those elements that are in odd, but not in prime. In other words, odd 

numbers that are not prime, in this particular collection 1 and 9 are examples of odd 

numbers that are not prime.  

And finally, unlike union which collects elements which are in both sets, we can do an 

exclusive or which takes elements which are exactly in one of the two sets. If we use this 



carrot symbol, then we will get 1 from the first set, 9 from the first set and 2 from the 

second set because 3, 5, 7, and 11 occur in both sets. So, we will not talk much more 

about sets, but you can use them in various contexts in order to keep track of a collection 

of values without duplicates using these built in operations.  
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Let us look at different ways in which we can manipulate sequences. A list as we saw is a 

sequence in which we can freely insert and delete values all over the place. Now, if we 

impose some discipline on this, we get specialized data structures one of which is a 

stack. A stack is a last in first out list. So, we can only remove from a stack the element 

that we last added to it.  

Usually this is denoted by giving two operations. When we push an element on to a 

stack, we add it to the end of the stack and when we pop a stack, we implicitly get the 

last value that was added. Now, this is easy to implement using built in python list. We 

can assume that stacks grow to the right. So, we push to the right and we pop from the 

right. So, push s x would just be append x to s.  

So, you can use the built-in append function that is available for lists to say s dot append 

x when we want to push and it turns out that python's lists actually have a built in 



function called pop which removes the last element and returns it to us. So, we just have 

to say s dot pop, where s is a list and we get exactly the behavior that we expect of our 

stack.  
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A stack is typically used to keep track of recursive function calls where we want to keep 

going through a sequence of functions and then, returning to the last function that was 

called before this. In particular when we do back tracking, we have a stack like behavior 

because as we add queens and remove them, what we need to do effectively is to push 

the latest queen onto the stack, so that when we backtrack, we can pop it and undo the 

last move.  
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Another disciplined way of using a list is a queue. Unlike a stack which is last in first 

out, a queue is a first in first out sequence. In other words, we add at one end and we 

remove at another end. This is exactly like a queue that you see in real life, where you 

join the queue at the back and when your turn comes, you are at the head of the queue 

and then you get served. So, add q will add x to the rear of the queue and remove q will 

remove the element which is at the head of the q.  

Once again we can use python lists and it turns out that it is convenient to assume that a 

list it that represents a queue has its head at the right end rather than the rear at the left 

and the head at the right. This is because we can use pop as before, but now when we 

want to insert into a queue, we can use the insert function that is provided with this. We 

have not seen this explicitly, but if you have gone through the documentation, you will 

find it.  

If I have a list l and if I insert with two arguments j and x, what it means is to put the 

value j before position j, put the value x before position j in particular if I insert at 

position 0, this has the effect of putting something before every element in the list. So, 

add q q comma x is just the same as q dot insert 0 comma x.  



In other words, push an x to the beginning. If I have a queue at this form which has some 

values v 1, v 2 and so on, then this insert function will just put an x at the beginning and 

as we said before, the reason we have chosen to use this notation is that we can then use 

the pop to just remove the last element of the list. Queues and stacks can both be like 

easily implemented using built-in lists.  
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So, one typical use of the queue is to systematically explore through search space. 

Imagine that we have a rectangular m cross n grid and we have a knight. Knight as a 

chess piece starting at a position s x comma s y. In this case, the knight is denoted by this 

red symbol. So, this is our knight. Now, the knight move, if you are familiar with chess is 

to move two squares up and one square left. This is a knight move.  

Similarly, this is a knight move; similarly this is a knight move and so on. So, knight 

move consists of moving two squares in one direction, then one square across. So, these 

are all the positions that are reachable from this initial position, where the knight move 

there are eight of them. So, our question is that we have this red starting square and we 

have a green diamond indicating a target square.  

Can I hop using a sequence of knight moves from the red square to the green diamond? 



So, one way to do this is to just keep growing the list of squares one can reach. So, in the 

first step we examine these 8 squares that we can reach as we said using one move from 

the starting position and we mark them as squares that are available to us to reach in one 

step. Now, we can pick one of them for instance one of the top left and explore what we 

can reach from there. So, if we start at this square for instance and now we explore its 

neighbors, some of its neighbors are outside the grid. So, we throw them away. We keep 

only those neighbors inside the grid and one of them notice brings us back to the place 

where we started from.  

Now, we could pick another square for example, we could pick this square over here and 

if we explore that it will again in turn produce 8 neighbors and some of these neighbors 

overlap the yellow neighbors. I indicate it by joint shading of yellow and green and in 

particular because both of them were originally reached from the starting point.  

Of course, the starting point reaches from both of them. The starting point is both colored 

yellow and green. So, as you can see in the process of marking, these squares, sometimes 

we mark the square twice and we have to have a systematic way of making sure that we 

do this correctly and do not get into a loop.  
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So, what we are trying to do is the following. So, in the first step we are trying to mark 

all squares reachable in one move from the starting point s x comma s y. Then, we try to 

mark all squares reachable from x 1 in one move, call this x 2, and then we will explore 

all squares reachable from x 2 in one move, call this x 3 and soon.  

Now, one of the problems is that we saw that since we could reach x2 from x 1in one 

move, then the squares that can reach from x 2 will include squares in x 1. So, how do 

we ensure that we do not keep exploring an already marked square and go around and 

round in circles and related to this question is how do we know when to stop.  
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Of course since we know that we are looking for the target square, if ever we marked the 

target square, we can stop. On the other hand, it is possible that the target square is not 

reachable. In this case, we may keep going on exploring without ever realizing that we 

are fruitlessly going ahead and we are never going to reach the target square. So, how do 

we know when to stop? So, a queue is very useful for this. What we do is we maintain at 

any point a queue of cells which remain to be explored. Initially the queue contains only 

the start node which is s x comma s y.  

At each point we remove the head of the queue and we explore its neighbors, but when 



we explore its neighbors, we mark these neighbors. Some of them may already be 

marked. So, we look at a x, a y, the element we remove from the head of the queue and 

we look at all the squares reachable at one step.  

So, reachable means I can take one knight move and go there and the result of this knight 

move does not take me off the board. So, I mark all these squares which are reachable 

from a x and a y, some of which were already marked, some of which are marked just 

now. So, what I do is, I take the ones which I have newly marked and add them to the 

queue saying that these are being newly marked.  

Now I need to also explore these squares for what I can reach from there. So, this 

guarantees that a square which has been reached once will never be reintroduced into the 

queue. Finally, we keep going until the queue is empty. When the queue is empty, there 

have been no new squares added which are unmarked before they were added. So, there 

is nothing more to explore and we have gone to every square we can possibly visit.  
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Here is some python pseudo code for this. We are going to explore from s x, s y to t x, t 

y. We assume that we have given to us the values m and n indicating the number of rows 

and columns in our grid. So, what we do is initially we set the marked array to be 0. 



Remember this list comprehension notation. It says 0 for i in range n gives us a list of n 

zeros and we do this m times for j in range m. So, I we will get a list consisting of m 

blocks and each block having n zeros. This says that initially nothing is marked.  

Now, we set up the thing by saying that we mark the starting node and we insert the 

starting node from the queue. Now, so long the queue is not empty, we pop one element 

from the queue. In this case s x, s y will come out. Now, there is a function which we 

have not written, but which will examine all the neighbors that I can reach from a x, a y 

and give me a list of such pairs of nodes I can reach. 

For each neighbor nx ny if it is not marked, then I will mark it and I will insert it into the 

queue, right. So, I pull out an element from the queue to explore, look at all its neighbors 

those which are not marked, I mark and put them back in the queue and finally, in this 

case I am not even going to check whether I have marked t x or t y in the middle. I know 

that if I have a finite set of squares at some point, this process has to stop. At the end I 

will return whether I will return the value of marked at the target node t x, t y. So, if I 

have reached it, this will return 1 which is true. If it is not reached, it will return 0 which 

is false.  
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Let us look at an example of how this works. So, here we have a three by three grid. 

Remember that the cells are 1 0 1 2 and 0 1 2 by our naming convention we want to start 

from the top center square. This is our source and here in the center is our target. So, let 

us erase all these marks and set up this thing as we expect. So, we say that initially the 

queue that we want to have as a source node and we mark the source node in the grid. 

The marking is indicated by a red mark. So, this is how we start.  

So, our first step is to remove this from the queue and explore its neighbors. Now, its 

neighbors are 2, 0, and 2. This means we will henceforth remove these brackets because 

it is more annoying. So, you just grow it like this. So, we say that my queue consists of 2 

comma 0 and 2 comma 2. This is my queue of vertices way to be explored. At each step I 

will now remove the first element of the queue and explore its neighbors. When I explore 

the neighbors of 2 0, I will find one of them is of course is where I start it from. I only 

look at unmarked neighbors. So, an unmarked neighbor is 1 2. I will add that back at the 

end of the queue.  

Now, proceeding I will take the next element of the queue which is 2 2 and look at its 

neighbors. So, 2 2 can go back again to the original thing and it also has a new thing here 

which is 1 0. So, continuing like this I remove 1 2 which is this one and then, look at its 

neighbors. So, one of its neighbors is 2 0, but one of them is 0 0. So, I get a new 

neighbor 0 0 here and then, I continue by taking 1 0 of the queue. So, 1 0 is this one. So, 

it has one new neighbor unexplored which is that one. So, my queue now has 0 0 

followed by 0 2. Then, when I explore 0 0, I get this neighbor at the bottom which is 2 1.  

Now, when I remove 0 2 which is this one, I find that both these neighbors I explored. 

So, I add nothing. I continue with 2 1. Again, I find both its neighbors explored and do 

nothing. Now at this point, the queue is empty and since the queue is empty, I stop and I 

find that my square of interest namely 1 1 was not marked. Therefore, in this case the 

target is not reachable from the source node.  
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This is actually an example of breadth first search which you will study if you look at 

graphs, but it just illustrates that a queue is a nice way to systematically keep track of 

how you explore through a search space.  
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To summarize data structures are ways of organizing information that allow efficient 



processing in certain contexts. So, we saw that python has a built-in implementation of  

lists of sets rather we also saw that we can take sequences and use them in two structured 

ways. So, stack is a last-in first-out list and we can use this to keep track of recursive 

computations and queues are first-in first-out list that are useful for breadth first 

exploration.  


