
Programming, Data Structures and Algorithms in Python
Prof. Madhavan Mukund

Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Week – 06
Lecture – 02

Global Scope, Nested Functions

 (Refer Slide Time: 00:02)

We were looking at the 8 queens problem, and our solution involved representing the

board, which squares are under attack and placing the queens one by one.

One feature of this solution is that we had to keep passing the board through the

functions in order to update them or to resize them and I had to initialize them and so on

because the board had to kept updated through each function. Now the question is can

we avoid passing the board around all over the place?

(Refer Slide Time: 00:31)

So, can we avoid passing this board explicitly or can we have a single global copy of the

board that all the functions can update which will save us passing this board back and

forth.

(Refer Slide Time: 00:42)

So, this brings us to a concept of Scope. The scope of a name in Python is the portion of

the code where it is available to read an update. Now by default in python scope is local

to a function, we saw that if we use a name inside a function and that it is different from

using the same name outside the function. But actually this happens only when we

update the name inside the function.

(Refer Slide Time: 01:08)

Let us look at this particular code. Here we have a function f which reads the values x

and prints it by storing it in the name y, Now the question is: what is this x? Well there is

an x here. So, will this x inside the function correctly reflect the x outside the function or

not.

(Refer Slide Time: 01:33)

So here we see that function, we have written a file f1 dot py which contains exactly that

code. So, we have function f which reads an x from outside and tries to print it. If you

run this, then indeed it prints the value 7 as we expect, so y gets the value 7 because the x

has the value 7 outside and that x is inherited itself a function from inside f .

(Refer Slide Time: 02:03)

So this works. Now what if you do this, and this is exactly the same function except that

after printing the values of y it sets x equal to 22 inside f. Now what happens?

(Refer Slide Time: 02:19)

So here is f2 dot py the code in the middle of the screen, so only difference with respect

to f 1 dot py is extra assignment x equal to 22 inside f. Now if you try to run f 2 dot py,

then it gives us an error saying that the original assignment y equal to x gives us an

unbound local name there is no x which is available at this point inside f. So, somehow

assigning x equal to 22 inside f changed the status of x, it is no longer willing to look up

the outside x it will insist that there is an inside x. This gives as an error.

(Refer Slide Time: 02:59)

So if x is not found in f, Python is willing to look at the enclosing function for a global x.

However, if x is updated in f then it becomes a local name and then it gives an error.

(Refer Slide Time: 03:15)

So strictly speaking this applies only to immutable values. If we change this function as

follows we made x not an integer, but a list for example and we asked y to pick up the

0th element in the list and then later in f we change the 0th element of x to 22.

(Refer Slide Time: 03:38)

Here we have this function in which we now changed x from an integer to a list and then

we try to assign it in y. But we update that list inside the function and then if you run it

then it does print the value 7 as we expect.

(Refer Slide Time: 03:55)

So this works. If we have an immutable value, I mean mutable value sorry, then we can

actually change it inside f and nothing will happen. So, global names that point to

mutable values can be updated within a function.

In fact, this means therefore that the problem that we started out to solve namely; how to

avoid passing the board around with its inside 8 queens actually requires no further

explanation. Since board is a dictionary, it is a mutable value and in fact we can write 8

queens in such a way that we just ignore passing the board around, we change all the

definitions so that board does not occur and works fine.

(Refer Slide Time: 04:33)

Here we have rewritten the previous code just removing board from all the functions. So

initialize earlier took board and n now it just takes n print board does not taken argument

at all and all of them are just referring to this global value board which you can see

everywhere. So, we have this global value board here which is being referred to inside

the function and it does not matter that is not being passed because this is the mutable

value, so it is going to look for the value which is defined outside namely this empty

dictionary. And then all these functions like place queen or undo queen or add queen just

take their relevant parameters and implicitly refer to the global value of board.

So, if you run this now this global version, we get exactly the same output. So, as we

said for our purpose which is to fix that 8 queens problem without having to pass the

board around, the fact that python implicitly treats mutable global names as updatable

within a function is all that we need.

(Refer Slide Time: 05:36)

But, what if we actually want a global integer? Why would you want a global integer?

Well, suppose for instance we want to count the number of times a function is called. So

every time a function is called we would like to update that integer inside this function.

But that integer cannot be a local name to the function because that local value will be

destroyed in the function, we want it to persist, so it must be a value which exists outside

the function. But being an integer it is an immutable value and therefore we try to update

it inside the function it will treat it as a local value. So, how do we get around this?

Python has a declaration called Global, which says a name is to be referred to globally

and not taken as a local value. If we change our earlier definition of f, so that we add this

particular tag global x then it says that this x and this x both refer to the same x outside.

This is the way of telling python, do not confuse this x equal to 22 with creation of a new

local name x. All x’s referred to in f are actually the same as the x outside and to be

treated as global values. So, this is one way in which we can make an immutable value

accessible globally within a Python program.

(Refer Slide Time: 06:51)

So here is that global code. We have global x, and just make sure that the x is equal to 22

inside is actually affecting that x outside. We have a print x now after the call to f. So the

bottom of the main program we have print x, now x was 7 before f was called but x got

set to 22 inside f. So, we would except the second print statement to give us 22. This

statement should first print 7. It should print a 7 from the print y and then print 22 from

this print x. So, if you run this indeed this is what we see right we have two lines, the

first 7 comes from print y and the second level 22 comes from print x outside.

(Refer Slide Time: 07:33)

While we are on the topic of local scope, Python allows us to define functions within

functions. So, here for instance the function f has defined functions g and h, g of a

returns a plus 1, h of b returns two times b. Now we can update y for instance by calling

g of x plus h of x rather than just setting it the value x.

Now, the point to note in this is that these functions g and h are only visible to f. They

are defined within this scope of f. So, they are inside f, and hence they are not visible

outside. So, from outside if I go if I ask g of x at this point this will be an error, because

it will say there is no such g defined. This is useful because now you can define local

functions which we may want to perform one specialized task which are relevant to f, but

it should not be a function which is exposed to everybody else and this is a possibility.

Of course, the same rules apply so if we look up x inside g or h. So, if we look up an x

here it will first try to look up f, if it is not there in f it will go outside and so on. So,

either we will declare it global in which case we can update it within g or h or it will use

the same rule as before if we do not update an immutable value it will look outside and if

it is a mutable value it will allow us to update it from inside.

 Now there are some further refinements. Python has an intermediate scope called non

local which says within g and h refer to the value inside f, but not to the value outside f.

This is a technicality and it will not be very relevant if we need it we will come back it,

but for the moment if you want to find out more about non local declarations please see

the Python documentation. But global is the important one, global allows us to transfer

an immutable value from outside in to a function and make it updatable within a

function.

(Refer Slide Time: 09:33)

To summarize, what we have seen is that Python names are looked up inside out from

within functions, if we update an immutable value it creates a local copy so we need to

have a global definition to update immutable values.

On the other hand, if you have mutable values like lists and dictionaries there is no

problem. Within a function we can implicitly refer to the global one and update it. And

this we saw in our 8 queens solution, we can make the board into a global value and just

keep updating it within each function rather than passing it around explicitly as an

argument.

Finally, what we have seen is that we can nest functions. We can create so called helper

functions within functions that are hidden to the outside that can be used inside the

function to logically break up its activities in to smaller units.

