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Improving naive gcd 
 

In the first lecture we used gcd as an example to introduce some basic concepts in 

programming. We will continue to look at the same example and see how to refine our 

program and explore new ideas. 
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Here was our basic algorithm for gcd, which as we said more or less follows the 

definition of the function. We construct two lists of factors for the inputs m and n. So, we 

construct fm the factors of m, fn the factors of n, and then from these we compute cf the 

list of factors in both lists or common factors. Our goal is to return the greatest common 

divisor of the largest number in this common list which happens to be the last one in this 

list, since we add these factors in ascending order. 
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So can we do better than this? The way we have proceeded, we first scan all numbers 

from 1 to m to compute the list fm of factors of m, and then we again start from 1 to n to 

compute fn. So, an obvious improvement is to just directly scan the numbers from 1 to 

the larger of m and n and in one scan compute list fm and fn.  

In another words for each i in this list 1 to the maximum of m and n we first check if i 

divides m, if so we add it to the list of factors of m, and then we check if i divides n and 

if so we add it to list fn. Instead of doing two separate scans over 1 to m and then 1 to n 

and repeating the past we do it in one scan. 
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But even this can be improved upon. If we are doing it in one pass and we are checking 

if numbers divide both - m and n, then why not we just directly check for common 

factors. In another words instead of computing two lists and then combining them we can 

just directly do the following: for each i from 1 to the maximum of m and n, if i divides 

both m and n then we directly add i to the list of common factors. If it divides neither or 

if it divides only one of them then it is not a common factor and we can discard. 

In fact, notice that rather than going to the maximum of m and n we should go to the 

minimum of m and n, because once we cross the smaller number we will not get a factor 

for the smaller number. Remember that the factors of m lie between 1 and m and for n lie 

between 1 and n. If m is smaller than n for example, if we input m plus 1 though it made 

a factor of n it certainly cannot be a factor of m. So our better strategy is for each i in the 

range 1 to the minimum of m, and n if i divides both m and n then we add i to the list of 

common factors. 
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Here is a much shorter Python program implementing this new strategy. So instead of 

computing the lists fm and fn we directly compute the list of common factors. We let i 

range from 1 to the minimum of m plus m and n and remember that Python requires us to 

give the limit of the range is one more than the limit we want to go up to, so we go from 

1 to the minimum m n plus 1. And now we have an extra connective it is called a logical 

connective and which says that we want two conditions to be proved, we want the 



remainder when m is divided by i to be 0, in another words i divides m and we also want 

the remainder when n is divided by i to be 0, so i should divide both m and n and if so we 

add i to the list of common factors.  

And having done so once again we are doing it in ascending order, so the common 

factors are being added as we go along the larger ones come later. So, we finally want 

the last element which in Python is given as the minus 1th element of the list cf. 
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So having done this, maybe we can simplify things further. Do we need a list of common 

factors at all? Remember that we only need the largest common factor. We observed that 

there will always be at least one common factor namely 1. So, the notion of the largest 

common factor will always be well defined for any pair m and n.  

Each time we can start with 1 and each time we find a larger common factor we can 

discard the previous one, we do not need to remember all the common factors we only 

need the largest one. So this can be greatly simplifying our strategy because we do not 

need to keep the list of every possible common factor in this list; we just need to keep the 

largest one that we have seen. We can use a name say mrcf for the most recent common 

factor, and keep updating this name with the value of the common factor that we saw 

last. 
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So here is a Python implementation of this idea where we do not have a list at all. We 

directly scan all the possible common factors from 1 to the minimum of m and n. 

Whenever we find a common factor we update the value of our name mrcf to be the 

current common factor that we have found. Now remember that 1 will always be a 

common factor, so initially mrcf will be assigned the value 1, it will not be that we go 

through this repeated execution of this and never assign mrcf because the condition is 

never true. 

Since one is the common factor we will at least have mrcf equal to 1, but if we find a 

larger common factor the one will be replaced by the later common factor. At the end of 

this for iteration or loop what we end up with is the largest common factor that we found 

between 1 and the minimum of m and n which is indeed the gcd of m and n. 
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We can still do some further optimizations. Since, we are looking for the largest common 

factor, why do we start at the beginning which will give us the smallest common factor. 

So, we can start at the end of the list and work backwards. Instead of running from 1 to 

the minimum of m and n we can start from the minimum of m and n and work 

backwards to 1. Again the guarantee is that the 1 will always show up as a common 

factor, so if there are no other common factors at the very end we will find 1 as the 

greatest common factor. 

And in this process we do not have to ever go past any common factor that we find, if we 

are working backwards from largest to smallest the very first common factor we find 

must be in fact the gcd of m and n. 
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How would we write this in Python? Well, you can modify that for i in range, so notice 

that normally this function goes from a smaller value to a bigger value, you can modify 

this to go backwards instead. But instead of doing this which we will see how to do later 

on when we actually get into formal Python, let us explore a new way of going through a 

list of values.  

We start by assigning to the index i, the value that we want to start with namely the 

minimum of m and n, remember we want to start at the largest possible value for i and go 

backwards. So what we have is, a new word instead of for called while, so while as the 

English word suggests is something that happens while the condition is true. So, while 

the i that we are looking for is positive. So while i is greater than 0, what do we do? We 

check if i is a common factor. This is the same as before, we check whether i divides m 

and i also divides n. 

If we find the common factor we are done, we just return the value of i that we have 

found and we implicitly exit from this function. Every time you see a return statement in 

a function, the function terminates and the value in the return is what the function gives 

back to us. So we start with i equal to the minimum of m and n and we check whether i is 

a common factor if it is so we exit and return the value of i that we last found. And this is 

the only value that we need, we do not need any other common factors. So, we return the 

very first time we see a common factor. 



On the other hand, if i is not a common factor we need to proceed by checking the next 

one which is to go backwards and this is the achieved by this update. So, remember that 

we said that we can assign values or update values using this equality operation. This 

equality operation is not mathematical equality as it looks, but rather it is the assignment 

of a value. It says, take the old value of i and make it the new value. So it says, update i 

to i minus 1, take the current value of I, subtract 1 and replace it in i. The mathematical 

equality is written as double equal too this is what we use in our conditions. 

So, it is important to remember this that double equal to means equality as in the left 

hand side is equal to the right hand side, whereas the single equality in Python and many 

other programming languages means assign a value to a variable. So, this is the final 

optimization that we have of this naive algorithm which is to basically scan for common 

factors from the beginning to the end. So now we are doing it from the end to the 

beginning and keeping only the first factor that we find. 
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What we saw in this example is a new kind of loop. So, this new kind of loop has a 

special word while. And while is accompanied by condition, so long as the condition is 

true, we do whatever is within the body of the while. Now notice that Python uses 

indentation, so these statements here are offset with respect to the while. This is how 

Python knows that steps 1 to k belong to this while. So, these are the steps that must be 

repeated at the end of this thing, you come back and you check whether the condition is 

still true, if it is true you do it one more time and so on. So, while is useful when we do 

not know in advance how many times we will repeat the steps. 

When we were scanning for the list of factors we knew that we would start with one and 

go up to the minimum of m and n. We could predict in advance that we would do 

precisely that many steps and so we could use this for loop, so for loop has a fixed 

number of repetitions. On the other hand, a while loop is typically used when you do not 

know in advance when you are going to stop. So in this case we going to start with the 

minimum of m and n, work backwards and stop as soon as we find the factor, but we 

have no idea in advance whether this will come early or will have to go all the way back 

to 1 which we know is guaranteed to be a valid factor. 

One of the problems that one could face with the while is that we keep coming back and 

finding that the condition is true. So we never progressed out of the while. So, so long as 

the condition is true these steps will be executed and then you go back and do it again. If 



you have not changed something which makes the condition false you will never come 

out. 
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In our previous example, in order to make the condition false we need to i to become 0. 

So we start with the minimum of m and n. So, what we guarantee is that every time we 

go through this while and we do not finish what we wanted to do we reduce i by 1, and 

so since we start with some fixed value and we keep reducing i by 1 eventually we must 

reach 0.  

So in general when you use a while loop you must make sure that you are making 

progress towards terminating the loop otherwise you have a dangerous kind of behavior 

called an infinite loop where the computation just keeps going on and on without 

returning a value and you have no idea whether it is just taking a very long time to 

compute the answer or whether it is never going to finish. 
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So in this lecture what we have seen is that we can start with a very naive idea which 

more or less implements the function as it is defined and work our ways to dramatically 

simplify the algorithm. Now one thing from a computational point of view, is that though 

the newer versions are simpler to program and therefore to understand, the amount of 

time they take is not very different. We are still basically running through all values in 

principle from 1 to the minimum of m and n. If we start from the beginning then we will 

run through all these values anyway because we scan all these numbers in order to find 

the common factors. 

In the last version where we were trying to work backwards and stop at the first common 

factor it could still be that the two numbers have no common factor other than 1. So 

again, we have to run all the way back from minimum of m and n back to 1 before we 

find the answer. Although, the programs look simpler computationally, they are all 

roughly the same and that they take time proportional to the values m and n.  

What we will see in the next lecture is that we can actually come up with a dramatically 

different way to compute gcd, which will be much more efficient. 


