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For the last lecture of this week, we will look at recursive functions.  
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Recursive functions are typically based on what we call inductive definitions. So, in 

arithmetic many functions are naturally defined in an inductive way. Let us explain this 

by some examples. The first and most common example of a function defined 

inductively is the factorial function. So, we say that zero factorial is 1 and then, we say 

that n factorial can be obtained from n minus 1 factorial by multiplying by n.  

Remember that n factorial is nothing but n into n minus 1 into n minus 2 product all the 

way down to 1. So, what we are observing is that after n, what appears can be rewritten 

as n minus 1 factorial. Inductively n minus 1 factorial can be extended to n factorial by 

multiplying by the value n. So, we can also do this for other functions. You may 

remember or you may not that multiplication is actually repeated addition when I say m 

times n, I mean m plus m plus m plus m, n times.  



So, how do we define this inductively well we say that m times 1 is just m itself and m 

times n plus 1 is m plus inductively applying multiplication to n. We could equivalently 

write this. If you want to be symmetric with the previous case as m times n is m plus m 

time n minus 1, the same thing. What you are saying is that you can express m times n in 

terms of m times n minus 1 and then adding it. So, in both these cases what we have is 

that we have a base case.  
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We have like 0 factorial or m times 1, where the values are given to us explicitly and 

then, we have an inductive step where f of n is defined in terms of f of n minus 1 and in 

general, it can be defined in terms of even more smaller arguments. So, one example of 

that is the Fibonacci series.  

If you have seen the Fibonacci series, the Fibonacci series starts with 1 2 3 5 and so on 

and this is obtained by taking the previous two values and then adding. So, the general 

rule for Fibonacci is that the first value is equal to the second value is equal to 1 and after 

the second value Fibonacci of n is Fibonacci of n minus 1 plus Fibonacci of n minus 2. In 

general a recursive or inductive definition can express the value for n in terms of 1 or 

smaller values of the function for smaller inputs. 
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Our interest in inductive definitions is that an inductive definition has a natural 

representation as a recursive computation. Let us look at factorial. Here is a very simple 

python implementation of factorial as it is defined, it checks the value n and says that n is 

0, then the return 1 otherwise return the value n times the computation recursively of 

factorial n minus 1.  

(Refer Slide Time: 03:33) 

 

This is very clearly what we said before; it says zero factorial is 1 and otherwise if n is 

not 0, n factorial is n times n minus 1 factorial. So, this is exactly what we wrote before 



directly translated as recursive computation. We can say the same for multiplication. 

You can say if you want to multiply m by n, if n is 1, we return m otherwise we add m to 

the result of multiplying m by n minus 1. 

Again we had written that before as m times 1 is n and m times n is m plus m time n 

minus 1. If you have an inductive definition, it immediately gives rise to a recursive 

function which computes same definitions. The advantage is that we do not have to 

spend much time arguing that this function is correct because it directly reflects the 

inductive definitions, the mathematical definitions of the function we are trying to 

compute.  
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Now, what may be less obvious is that we can do the same thing for structures like list. A 

list has an inductive structure a list can be thought of as being built up from an empty list 

by adding one element at a time. So, we can think of decomposing a list, reversing the 

step. So, we start building a list from an empty list by adding one element at a time say 

we add them to the left. We add the last element and we add the second last element and 

so on.  

But conversely we can say that given a list we can decompose it by taking say the first 

element and looking at that first element and the remaining list after removing the first 

element which has one less element. This gives us our induction we have a smaller 

structure on which we can try to express a function and then we can combine it with the 



first element to get the value for the larger thing. So, we will have a base case where the 

function is a defined either for the empty list or for the simple list of size 1 and in the 

inductive step f of l will be defined in terms of smaller sublists of l.  
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Again this is best understood through some simple definitions suppose we want to 

compute the length of the list l. Well the base case if the list is empty it has zero length. 

If l is equal to 0 - l is equal to the empty list, we return 0; otherwise what we do is we 

have a list consisting of a number of values. So, we pull out this first value and we say it 

contributes one to the length and now inductively we compute the length of the rest, 

right.  

We return 1 plus the length of the slice starting at position one. This is an inductive 

definition of length which is translated into a recursive function and once again by just 

looking at the structure of this function, it is very obvious that it computes the length 

correctly because this is exactly how you define length inductively.  
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Now here is another function which does something similar except instead of computing 

the length, it adds up all the numbers assuming that list is a list of numbers. Again if I 

have no numbers to add, if I have an empty list, then the sum will be 0 because I have 

nothing to put into this sum. 

On the other hand, if I do have some numbers to add, well the sum consists of taking the 

first value and adding it to the rest. If I have a list called x 1, x 2 up to x n, then I am 

saying that this is x 1 plus the sum of x 2 up to x n. I can get this sum by this recursive or 

inductive call. Then, I just add this value to that. 
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Insertion sort which we have seen actually has a very nice inductive definition. If we 

have a list of size 0 or size 1, it is already sorted. We do not have to do anything, so this 

becomes the base case. 

On the other hand, if we have a list of length two or more, we inductively sort the slice 

from the beginning up to, but excluding the last position. This is slice from 0 to length of 

the list minus 1, then we take the last position and then, this should be minus 1. So, we 

take the value at the last position and we insert it into the sorted slice. We insert the last 

position into the inductively sorted slice excluding the last position.  
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Here is a recursive definition of insertion sort in python. The natural thing in python or in 

any other thing would be to say that we want to insert the last position into the result of 

sorting the sequence up to, but excluding the last position, but the way we have written  

our insertion sort; this function does not return a list. It sorts this thing in place. This call 

would not have the correct type because insert will take a sequence and a position and 

insert this value at this position to its left. So, we write it now as two separate things.  

First of all we have an overall insertion sort which takes a sequence and it will call this 

auxilliary function which says: sort this sequence up to this position. So, isort sorts the 

slice from 0 up to k minus 1. So, what does isort say? isort checks if is the base case if k 

is 0 or k is 1. If I am sorting up to the first position or I am not sorting anything at all, 

right - then I will just return the sequence. This is telling me sort from 0 to k minus 1.  

If it is 0, then I have an empty list. If I have 0 to 1, then I have a list of one position, it is 

only if I have 0 to 2 that I have at least two elements. And if so, what I do is I sort k 

minus 1 positions and I insert the last position into this sequence. What does insert do? 

Insert does exactly what we did when we did the regular insertion sort. It sets a position 

variable or name to the last position and walks left and keeps swapping. So long as it has 

not reached the left hand side h and so long as it finds something to the left which is 

strictly bigger than the one that you looking at. So, this is what we did earlier.  



What is new is this part which is this recursive call, it says sort the sequence up to this 

position, recursively using the same isort but change the index from k to k minus 1 and 

then insert the current value into this sequence.  
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So, as before let us run this in python. Here is the code isort rec dot py which contains 

this recursive implementation of insertion sort. So, if I now import this, then as before if 

we say l is a range of 500 values say, in descending order, then if we apply insertion sort 

to this, then l produces the ascending order 1 to 500.  

Last time we said that for n squared sort, we should look at larger values. Supposing we 

take range 1000, now if we take range 1000, then something surprising happens. We get 

an error message from python saying that it could not sort this because it reached 

something called the maximum recursion depth. So, what happens when we make a 

recursive call is that the current function is suspended. We try to sort something of length 

1000. It will try to insert the 1000th element into the result of sorting the first 999. So, 

we suspend the first call and try to sort 999. This in turn will try to insert the 999th 

element into sorting the first 998. So, it will suspend that and try to sort the first 998.  

At each time we make a recursive call, the current function is suspended and a new 

function is started. So, this is called the depth of recursion. How many functions have we 

suspended while we are doing this process? Now unlike some other languages, python 

imposes a limit on this and the limit as we can see is clearly less than 1000 because we 



are not able to sort a list of 1000 using this particular mechanism. So, how do we get 

around this? Well, first of all, let us try and see what this limit is.  

We know that we cannot sort 1000, but we could sort 500. So, can we sort 750 for 

example, it turns out that we can sort 750. Now, it will turn out that, for instance, we can 

sort 900. So, we can actually find this limit by doing what we did earlier - binary search. 

We can keep halving although I did not strictly halve after 750. I know it fails at 1000, it 

does not fail at 750, I should have tried 875, but I will spare you this binary search and I 

can show you that if I use 997, then it will work, but I use 998, then it will fail. So, 

somewhere around 998 is the recursion limit that python uses by default.  

Now, fortunately there is a way to get around this. So, you can set this recursion limit 

and the way you do it is the following. You first have to import a bunch of functions 

which are called system dependent functions by saying import sys and then, in sys there 

is a function called set recursion limit and we can set this to some value bigger than this 

say 10000. Now, if we for instance ask it to sort a list of 1000, then it does not give us 

error. Same way, I could even say 5000 because 5000 will also only create the same kind 

of limit because it is well under 10000.  

Remember that in this we are basically doing recursion exactly the number of times as 

there are elements because we keep inserting, inserting, inserting and each insertion 

requires us to recursively sort the things to its left. That is why we get the stack of nested 

recursions, but the thing to remember is that by default, python has an upper bound on 

the number of nested recursions which is less than 1000, if you want to change it you can 

by setting this recursion limit explicitly, but python does not allow you to set it to an 

unbounded value. You must give it an upper bound. So, you cannot say let recursion run 

as long as it needs to. You have to have an estimate on how much the recursion will 

actually take on the inputs you are giving, so that you can set this bound explicitly.  

Now, the reason that python does this is because it wants to be able to terminate a 

recursive computation in case you have made a mistake. A very common mistake with 

recursive computation, it is a bit like we said for while loops, if we never make the 

condition false, a while loop will execute forever. Same way if we do not set the base 

case correctly, then a recursive computation can also go on forever. The way that python 



stops this and forces you to go and examine the code is by having a recursion limit 

saying beyond a certain depth, it will refuse to execute the code.  
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So, what we have seen is that we have this recursion limit and we can raise it manually 

by importing this sys module and setting the set recursion limit function inside sys.  
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So how would we analyse the complexity of recursive insertion sort? So as before, we 

use T of n to denote the time it takes to run insertion sort on an input of length n. 

Insertion sort at the highest level consists of two steps. We first have to sort the initial 



slice of length n minus 1 and by definition, this will take time T of n minus 1 and then, 

we need n minus 1 steps in the worst case to insert the last position into the sorted slice. 

This gives rise to what we call a recurrence. We saw this when we were looking at how 

to analyse binary search which was also a recursive algorithm. We have that T n in 

general is n minus 1 plus T of n minus 1 and T of 1 when we come to the base case is 1.  

As with the binary search, we can solve this by expanding or unwinding the recurrence. 

So, we have T of n is n minus 1 plus T n minus 1. If we take T n minus 1 and apply the 

same definitions, we get n minus 2 plus T n minus 2. Then, we take T n minus 2 and 

apply the same definition, we get n minus 3 and T n minus 3 and this will keep going on 

until we get T of n minus k is equal to T of 1. In other words when k becomes n after n 

steps, we will have 1. So, we will have n minus 1 plus n minus 2 down to 1 which is the 

same thing we had for the iterative version of insertion sort - n into n minus 1 by 2 and 

this is order n squared.  
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We have seen two order n squared sorting algorithms both of which are very natural 

intuitive algorithms which we do by hand when we are giving sorting tasks to perform - 

selection sort and insertion sort. We have also seen that both of these will not work in 

general if we have large values of n and not even so large; if we have values of n over 

5000. But we also saw in the previous two lectures that insertion sort is actually slightly 

better than selection sort because selection sort, the worst case is always present because 



we always have to scan the entire slice in order to find the minimum value element to 

move into the correct position where insertion sort will stop as soon as it finds something 

which is in the correct order.  

So if we have a list which is already sorted, then insertion sort will actually work much 

better than n squared, but we cannot rely on this, and anyway we are counting worst case 

complexity. So, we have to take the fact that both of these will in general not work very 

well for lists larger than 5000 elements.  

What we will see next week is that there are substantially more efficient sorting 

algorithms which will allow us to sort much larger lists than we can sort using selection 

sort or insertion sort. 


