
Introduction to Operating Systems
Prof. Chester Rebeiro

Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Week – 08

Lecture – 35
Operating System Security

Hello. In this video we will look at Operating Systems Security. Now, security as such is

become extremely important in this current world because systems as such are always

connected as a result it becomes very easy for malicious programs to enter into the

system. Therefore, operating systems should be designed in such a way so as to prevent

as much as possible any loss of information due to such malicious intuitions.

So, we will see a brief introduction to Operating Systems Security in today’s video.

(Refer Slide Time: 01:00)

So, whenever we design a system, we need to have some security goals and these goals

are the secrecy, integrity and availability of the system. Now, secrecy or confidentiality

means that certain objects should not be visible to particular processes, for instance

depending on the privilege of a process and also on the privilege on the user running that

process certain objects like certain files stored in the desk or certain network sockets

should not be readable by that process. Essentially what confidentiality achieves is that

unauthorized disclosure of some objects should be prevented. What secrecy or

confidentiality achieves is that unauthorized disclosure of certain objects like files and

sockets should not happen.

With respect to integrity means unauthorized modifications. In other words a malicious

user or a user with not sufficient privileges should not be able to write to a particular

object, such as a file or a socket. To take an example, a normal user in the system should

not be able to modify some system related files. Availability, on the other hand means

that a particular user or a particular process has a limited use of the system resources. In

other words, one particular user should not be able to hog the entire system resources.

If such a thing is not available in the system it could be lead to what is known as denial

service attacks, wherein some malicious programs running on the system will prevent

any other program which is present from having access to certain hardware resources

like the CPU, the RAM or disk. So, availability in a system largely depends on how the

operating system gets designed.

For instance, we have seen how CPU schedulers can be designed in order to ensure fair

scheduling that is every process in the system gets a fair share of the CPU depending on

it is priority. Now, in order to achieve secrecy and integrity what operating systems

generally do is to have access control. So, we will be looking at access control

techniques in this particular video.

(Refer Slide Time: 04:04)

In order achieve access control, what it means is that every access to an object such as a

file, a socket or it could be a hardware device like a printer or a monitor should be

controlled. Essentially, if a process wants to get access to a particular file or any other

object in the system it has to go through an access control mechanism. Essentially, all

and only authorized accesses can take place. In other words, if a process needs to access

an object then it definitely should be given access to that particular object. So, what do

we mean by access essentially by access we mean an operation on the object which a

particular process intense to do.

So, these operations could be one of read, write, execute, create or delete. Now, this

access should be permitted if and only if the particular process is authorized to make that

access. In other words, only if a process is authorized to execute a particular program or

read or write to a particular file only then should the operation be permitted.

(Refer Slide Time: 05:39)

In order to develop an access control systems there are three components security

policies, security model and security mechanism. Security policies are high level rules

that define the access control. Security model is the formal representation of the access

control security policy and it is working essentially this is a formal model or a

mathematically represented model of the security policy, and this model is used to help

in proving various things about the system, for instance you could use this particular

security model to prove that a particular system is secure.

Now, security mechanism is low level hardware or software that has the functional

implementation of the policy that is the security policy and the model. So, in other words

you can think of this as the high level rules that define the security policies or the

security features that need to be supported by the system. This is a mathematical model

or slightly lower level representation and while this mechanism is the actual

implementation of the policies. So, let us look at each of these more in detail.

(Refer Slide Time: 07:10)

So, security policy is essentially a scheme for enforcing with some policies within the

system. How do we decide upon what policies a system should have, this is defined by

what threats are present in the system as well as how the system is designed. So,

developing a security policy is not easy. It would require a lot of brain storming to

actually identify what are the various threats that or what are the various attacks that are

possible on the system and once these attacks are known then policies are created in

order to prevent such attacks. So, how is the security policy actually looks like?

A security policy essentially would be a set of statements. These statements should be

extremely succinct and precise and should have the goals of the policy. So, these goals

should be agreed upon by either the entire community or the entire set of people who are

developing that system, or by certain top management and this forms the basis for the

security model which is the formal mathematical representation of the policy.

(Refer Slide Time: 08:42)

Let us take how a security policy should not be written. So, what we are seeing now is

that security policies are not necessarily for computer systems, but it could also be for

organizations. So, this particular security policy is for this particular company called

Megacorp Incorporated. So, the security policy is extremely short, it has a just four

statements and it reads as follows; this policy is approved by the management, all staff

shall obey the security policy, data shall be available only to those with a need-to-know,

all breaches of this policy shall be reported at once to security.

What is the issue with this particular security policy? If we actually take closer look at

this policy from this particular company, what we see that there are lot of flaws in this.

So, essentially the policy is not complete and cannot be used to build a security

mechanism, for instance this policy is approved by management the first thing. So,

typically in our security, policy the approval of the policy should not be part of the policy

document itself.

Second, all staff shall obey. So, what we mean by this? Who enforces that a staff should

obey? Is it moral requirement of the staff to actually obey to this policy or there is

actually a unit which enforces all staff in the organization to obey for this particular

policy? Third, the need-to-know, how or how to be defined what I need to know? Who

determines who should know or what information? So, this is not specified or not very

obvious from these particular policy statements.

Finally, all breaches of this policy should be reported at once the security. So, how are

the breaches deducted? The security policy does tell not tell any anything of this form

whose duty is to report them. This two is not mentioned over here. So, as you see even

though this particular policy is very short and very tars and incorporates itself just four

points, still it leads to a lot of ambiguity and such ambiguity would lead to a weak

security for that company. So, when we have to write a security policy for a company it

should be complete in all aspects.

(Refer Slide Time: 11:36)

Now, let us look at the security model, essentially why do we need to have the security

model at all? Why cannot we go from the security policy, use the security policy and

directly implement security mechanisms. Why do we need to have a security model

present in this entire hierarchy? Essentially by having a security model we are able to

model the security policy in a lower and more formal construct. In this way any gaps in

the security policy will be deducted and secondly, we could also use tools and techniques

in order to argue or prove that the system is indeed secure with respect to the security

policy that was defined.

(Refer Slide Time: 12:31)

So, the last aspect is the Security Mechanism. Security Mechanism as we have seen deals

with implementing of the security policy. Now, it is important that implementing the

security mechanism is bug free, it has no bugs. Why is it extremely important that there

are no bugs? This is because if there are bugs in the implementation of the mechanism

then it would be possible for attackers to exploit that bugs and get in unauthorized

accesses into that system.

Second, the implementation of the security mechanism should be the trusted base.

Essentially this is the core from where the security of the entire system would depend on

therefore, if it itself is buggy and incomplete it will not create a secure system. So,

properties of the security mechanism implementation is that it should be tamper proof,

non-by passable and by non-by passable, we mean that all accesses into the system

should first be evaluated by the security mechanism then it should be a security kernel.

So, what it means by this is that the entire implementation for the security policy should

be confined to a limited part of the system and it should be scattered into various parts of

the system.

So, having a security kernel where everything is just confined into, say a small part of

the entire system would make it easy to test and debug and verify in terms of security.

Again it should also be small. So, a small size for the security mechanism will ensure

that it can undergo some rigorous verification.

(Refer Slide Time: 14:35)

Now, there are 3 techniques for access control. They are the DAC, MAC and the RBAC.

So, DAC is the Discretionary Access Control, MAC is Mandatory Access Control and

RBAC is Role-based Access Control. So, we will be looking at the DAC and MAC at

this particular lecture.

(Refer Slide Time: 15:00)

Discretionary Access Control or DAC is an access control which is based on the identity

of the requester. There would be a set of access rule what requesters are or not allowed to

do. So, these access rules would define essentially what objects the requester, it also

known as the subject could access and what objects could be read, written to, executed,

created or deleted and so on.

Now, the privileges for these various objects are granted as well as revoked by the

system administrator. So, users if they have a particular privilege then they can also pass

on that privilege to other users. A very common example of a DAC system that is the

discretionary access control system is the access matrix model.

(Refer Slide Time: 16:05)

So, the Access Matrix Model was designed Butler Lampson in 1971. It comprises of

subjects and objects, in addition to this it also has a table in this form where each cell has

some particular actions. So, subjects are active elements in the system, such as users of

the systems or processes or programs that are requesting information.

Objects on the other hand are passive elements which, for instance stores information

now the actions are specified in each cell of this particular matrix. So, for instance the

subject; Ann has execute permissions for program 1, she has read and write programs

permissions for file 1 and she has read and write permission for file 1 as well as she is

the owner for file 1. So, if you look more carefully, Ann does not have any permission on

file 3, she can neither read it nor write it nor she can actually read or write the program 1.

(Refer Slide Time: 17:27)

So, in order to represent this access matrix model in a formal method, what we can do is

define this matrix A which comprises of X s i that is for subjects and X o j, which is for

an object. So, A of this particular thing would indicate the subject s i, for instance Bob

and an objects for instance file 2. Then we could also give rights to each cell in this

particular matrix.

For example the rights could be taken from a set like this r 1, r 2 to r k and this particular

thing A of X s i, X o j is the subset of R. So, for example, the rights in this example is

own read write execute, so on and these would be in the set R and corresponding to each

cell in this matrix we define what the rights are. So, this would define what the right for

subject s i has on the object o j. In addition to this there is something known as the

primitive operations. So, this is represented by O and it is the set of 6 operations which is

specified here.

So, this is for instance enter r into some location in the matrix or delete r from that

location here r is taken from the generic rights. So, it is an element form the set r

similarly other operations are to create a particular subject X s create an object X o

destroy a subject X s or destroy an object X o.

These are the only primitive operations that can be done on these this particular access

matrix. So, as we see each of these primitive operations would either modify the contents

of a particular cell in the matrix or it could delete an entire column with the destroy

subject can destroy object. It could either delete a particular column or a particular row

or if it wants it could also create a new column that is creating an object or creating a

subject. Once, we have defined such primitive operations we can define something

which is a bit more complex and paste on this primitive operations which are known as

commands.

(Refer Slide Time: 20:17)

So, to recollect we have the access matrix which is specified by A. We have the generic

rights r 1 to r k and we have six primitive operations as we specify here. So, we can use

all of this to create complex commands like this way a typical command would look like

this and it would be called say, for instance alpha which takes several parameters x 1 to x

n and we can have a set of rules, for instance if r 1 is in this matrix cell and r 2, r 3 and so

on then perform these following operations. So, what we are saying is that based on these

low level primitive operations, the genetic rights and the access matrix, we can have

more complicated commands on the access matrix.

(Refer Slide Time: 21:19)

Let us take a few examples of such commands, for instance create a process comma file.

So, process here is the subject and what it means to say is this process wants to create

this file. So, the command will work like this. So, first we use the primitive operations

create an object file and then enter own into that process comma file. So, this process

comma file corresponds to the cell in the access matrix. If this particular command is not

present then it will not be possible for a process to actually create a particular file. So,

this is a very simple example.

We could have something a bit complicated like this particular example that is CONFER

r - owner, friend, file. So, owner and friend are the subjects and file is the object over

here and what is intended to do by this particular command on the access matrix is that,

we want to confer write r which is present over here to a friend for that particular object.

So, this owner wants to confer the right r for the friend with respect to this particular file.

So, what goes on in this particular command, essentially we first test if the owner is the

indeed the owner of that file. So, we see that first if own right is present in owner comma

file in the matrix cell corresponding to owner the subject and file the object if this is

indeed true then enter r that is enter the right r into the front comma file part of the

matrix.

Similarly, we can have another example where we can remove a right from an exfriend

we are passing this particular command three parameters the owner ex friend and the file.

So, essentially what we want to do is revoke the particular right r from this exfriend

which is another subject. So, the command looks like this if own is in the owner comma

file that is if owner is indeed the owner of the file and the right r is present in exfriend

comma file then deletes r from exfriend comma file. Therefore, we can remove the right

r which could be a read or write or execute right on the file with respect to exfriend

essentially the exfriend subject will not have the right r on the particular file.

(Refer Slide Time: 24:24)

Protection system, if we actually represent it by this particular matrix and what we seen

is that we could apply commands to it like we have seen a couple of commands in the

examples in the previous slide and with each command we are modifying this particular

access matrix. So, this command, for instance has modified this cell over here in the

access matrix. Similarly, if you run another command, another part of the access matrix

or multiple cells in the access matrix will be modified. So, based on this we define, what

is known as a leaky state? A state of the access matrix is said to leak right r if there exist

a command that adds the right r into an entry in the access matrix that did not previously

contain r.

So, what this means is that we have the state of the matrix here and we run a command

and as a result there is an r or right r which is entered into this particular matrix. So, what

we say is that this particular state of the matrix leaks r. Now, a leaky state does not

always need to be bad. So, it is meant to left to us to actually determine whether leaking

this r from a particular cell in the matrix is good or bad with respect to security of the

system.

(Refer Slide Time: 26:03)

Let us define when a system is said to be safe. So, we have two definitions of safety. The

first definition; a system is safe if access to an own in an object without the owner’s

concurrence is impossible. Second, a user should be able to tell if giving away a right to

a particular subject and obstruct with respect to an object would lead to further leakage

of that right.

(Refer Slide Time: 26:43)

Let us see what this means form a formal model. Suppose, a subject s plans to give

another subject s prime the right r to object o, with r entered in s prime comma o that is

with new right added to this particular cell of the matrix. Is it possible that r could

subsequently be entered somewhere else in the matrix A, if such a thing is possible then

the system is set to be unsafe. So, essentially a system is unsafe if any operation or any

command run on the access matrix could result in that particular right being conferred or

transferred to someone else or to somewhere else in the matrix.

(Refer Slide Time: 27:47)

We will look at an example of an unsafe state. Let us consider these two commands one

is the, CONFER execute. So, the subject S once we confer the subject S prime the,

execute right for O. So, this command confer execute S comma S prime O states that a

subject if it is the owner of the object O then it can give the right x that it can give the

right to execute object O to another subject S prime.

Now, let us say our system also has this particular command which is called modified

rights which states as follows, if a particular subject has an execute right with respect to

an object then it can also enter a right in that particular object. In other words, what this

modified right allows us to do is that if a particular subject can execute an object then it

can actually modify its rights in order to change the object as well. So, essentially it can

write into that object.

Let us look at a particular scenario to see, how this example shows an unsafe state. So,

let us say, Bob creates an application object, he wants to be executed by all others, but

not modified by them. So, the system is obviously, unsafe due to the presence of

modified right in the protection system. Access Alice another person who has the execute

right for that particular object or application could invoke modify right to get the

modification rights on that application and once Alice gets the right to modify that

application then there is nothing stopping Alice from actually changing that operation.

So, what we see is that because Bob has given the execute permission on a particular

object, and the systems policies or the systems access control mechanism is built in such

a way that because this right is present in a particular object then the w write is also

given to that particular object essentially if a subject has the execute right for an object

then that right is actually transformed and transferred and it will cause the w write to be

also associated with that particular object with respect to that subject. Therefore, this

particular state in the system is an unsafe state.

(Refer Slide Time: 30:48)

How do we actually implement the access matrix model? So, one way as we seen is to

have the matrix representation; however, the issue with this particular representation is

that it is too large as well as it is too sparse. So, it is not a very efficient way to use.

The other technique is used to something known as an authorization table as is shown

over here. This particular table is used in data bases and what it actually helps is that

each row comprises of a user it has a right and it has an object. So, it says that for

instance and has a read write on the object file 1.

So, for every right that Ann holds there will be a separate row in this particular table. So,

the problem with this particular scenario is that or this particular implementation is that

one needs to at least search the entire table in order to identify whether a particular user

has a particular right on a particular object. So, it again is having a lot of performance

issues with respect to how long it takes to determine a particular write or a subject and

object.

(Refer Slide Time: 32:14)

Another technique of implementing the access matrix model is by using capabilities.

Here, each user is associated with the capability list indicating for each object the

permitted operations. For instance, Ann, for file 1 has the following rights over here, for

file 2 she has these rights, program 1 she has these rights. Similarly, for every user we

have such a list and these are the capabilities list for that user with respect to each of

these objects.

The advantage of such a model or such an implementation is from a distributed system

scenario since it prevents repeated authentication of a subject. So, essentially once, the

subject authenticates itself in the distributed environment then it could obtain this entire

list and the system will know it is rights for each object which is present. However, that

limitation is that it is vulnerable to forgery if a particular right or a list is copied by an

attacker it can be then misused.

(Refer Slide Time: 33:34)

The third way of implementing the access control model is by what is known as ACL or

Access Control List. Essentially, each object here is associated with the list indicating the

operations that each subject can perform on it. Essentially, this is the opposite of the

previous way. So, corresponding to object we have a list and each node in the list has a

subject and the corresponding operations that are present here. So, the advantage that we

get with this particular thing is that it is easy to represent by small bit factors. So, if you

look at how UNIX actually implements this ACL.

(Refer Slide Time: 34:19)

So, we see that every file in a unique system has 9 bits associated with it. So, this gives

the authorization for each file to be specified, for instance there are 3 bits which specify

read, write, execute for the file for the owner of the file. Then we have the group for

which we have the 3 bits r, w, x for the group and for the rest of the world, for the others

that is we have 3 more bits thus in a unique system which uses the ACL implementation

of the access matrix. There are 9 bits involved and each of these bits would give

permissions to various users of that file.

(Refer Slide Time: 35:13)

Now, the vulnerabilities in the discretionary policy are that, it is subjected to the Trojan

Horse attacks. What we mean by Trojan horse is that it is a small code which is present

in a larger non-malicious code. So, this small Trojan present in the larger code is the

malicious code; the issue with this is that because the Trojan is actually like a virus

which is joined with a much larger program.

The Trojan can actually inherit all the users or all the processes privileges, for instance if

you have a Trojan which is connected to let say a program which has a super user

privileges to execute or which needs to execute as a route then the Trojan itself would be

able to inherit or all the route permissions. The reason why this happens is that the Trojan

present in the process would send request to the operating systems in the valid user

behalf. From the OS prospective, the operating systems will not be able to distinguish

whether it is from the valid process, which is started by a valid user or whether the

request is coming from a Trojan. Therefore, it becomes difficult to detect.

(Refer Slide Time: 36:51)

Another drawback of discretionary policy is that it is not concerned with information

flow. Anyone with access to information can also propagate information, for instance if

we have this one person over here who is able read a particular file there is nothing

stopping this person from actually making copy of this file and transferring it to hundred

different people. As such the discretionary policies do not take care of the flow of

information from one person or one user to another. It is only capable of preventing

access to information, but not the flow of information.

On the other hand, in order to consider flow of information also we need to use what is

known as information flow policies which restricts how information flows between

subjects and objects.

So, we will look at Information Flow Policies in the next video.

Thank you.

