
Introduction to Operating Systems 
Prof. Chester Rebeiro 

Department of Computer Science and Engineering 
Indian Institute of Technology, Madras 

 
Week – 06 

Lecture – 29 
Semaphores 

 

Hello. In this video, we will look at another synchronization primitive known as 

Semaphores. As usual we will start with the motivating example and then we will show 

the Application of Semaphores. 

(Refer Slide Time: 00:35) 

 

Let us start with the very popular example known as the Producer-Consumer Problem. 

This is also known as the Bounded buffer Problem. Essentially, what we have here are 

two processors; one process is known as the Producer and the other process is known as 

the Consumer. Now the producer and the consumer share a bounded buffer. This is a 

normal buffer and it has size of N that is it has N data elements which can be stored in it. 

In this particular case for example, there are 6 elements that can be stored in the buffer. 

Now the producer produces data. So for instance, it could be data acquisition module 

which collects data such as the temperature, pressure and so on, so this data is pushed 



into the buffer. Now on the other side, the consumer takes from the buffer and then 

processes the data. For example, this consumer process could perhaps compute some 

analytics on the producer data. 

So, everything would work quite well, that is the producer produces data, a puts it on the 

buffer and on the other side the consumer takes from the buffer and begins to consume 

the data. For instance computes something with the data. The trouble will occur when for 

instance the consumer is very slow compare to the producer. In such a case the producer 

will produce quite a bit of data at a faster rate compare to the consumer and therefore 

very quickly the buffer will be full. 

So, what does the producer do in next? And the other problem could occur where the 

consumer is very fast compared to the producer. And therefore, it could very quickly 

consume all the data in the buffer, and resulting in a buffer which is empty. So, what 

should the consumer do next? This requires a synchronization mechanism between the 

producer and the consumer. Essentially, when the buffer is empty the consumer should 

wait until the producer fills in data into the buffer. Similarly, when the buffer is full the 

producer has to wait until the consumer takes out data from the buffer. 

(Refer Slide Time: 03:25) 

 



So this is the general producer and consume code, and we are trying to solve the 

producer-consumer problem by using the Mutexes, Essentially, we are using 3 mutexes; 

empty, full, and a mutex just called a mutex. 

So, the producer code essentially would produce an item insert the item into the buffer 

and increment the count, count plus plus. While, the consumer code would remove the 

item decrement a count and then consume the item. Now in order to take care of the 

troubled situation, that is when the buffer is full or the buffer is empty we are using these 

mutexes; empty and full. Essentially, before inserting the item the producer would check 

if count equal to N, that is it is going to check if the buffer is full. And if the buffer is 

full, it is going to sleep on this particular mutex called Empty. 

On the other side, the consumer would check if count equal to N minus 1 which means 

that it has just removed one element from a full buffer. So if this is so then it is going to 

wakeup empty. This wakeup is a signal to the producer to wake up from it is sleep and 

then the producer can insert the item into the buffer and increment a count. On the other 

hand, if the consumer finds that the buffer is empty that is the count equal to 0 then it is 

going to sleep on this particular mutex called Full. So, it will block on this mutex until it 

gets a wakeup from the producer. 

 Essentially, if the producer finds that when he insert with the item and incremented 

count that there is exactly 1 item present in the buffer then he will send a wakeup signal 

to the consumer, so wakeup full. And therefore, this wakeup full will cause the consumer 

to unblock and put it back into the ready q and it would allow the consumer to execute, 

and remove that item and then consume that item. After he removes the item the counts 

goes back to 0 and search this case. Now in addition to this empty and full mutexes there 

is also the third mutex which is used. So, this mutex is essentially used to protect or 

synchronize access to the buffer. So, before inserting an item and incrementing the count, 

the producer needs to lock the mutex and unlocking is done after the item is pushed and 

count incremented. 

On the other side, before the buffer is accessed to remove item and also count is 

decrementing. Essentially you notice that count and the buffer are shared among these 



two a processes that is the producer and the consumer. And therefore, this mutex will 

help synchronize access to the buffer and to the count value, so this solution seems to be 

work fine that is with the 3 mutexes. So, while this scheme seems fine we will show that 

under a certain condition the producer and the consumer will block infinitely without any 

progress. 

So that condition is based on the fact that this particular line, if count equal to equal to 0 

actually comprises of two steps which are non atomic. The first step is that the count 

value which is stored in memory will be loaded into a register in the processor, and the 

second step is when the register value is checked to be 0 or not. Let us look at the 

problem that could occur because this particular execution or this particular statement is 

non-atomic 

(Refer Slide Time: 08:12) 

 

So let us say, that the consumer starts executing first and it is starts executing with an 

empty buffer. It reaches the value of count from memory location into a register, since 

we are assuming that this is the initial state so the value of count that is loaded into the 

register would be 0. Let us then say that there is a context which that occurred and the 

producer has executed. Now the producer produces an item, increments the count to 1, 

and then inserts the item into the buffer. After it executes let us say that there is a context 



switch again, as a result the consumer continues to execute from where it had stop that is 

from this point. 

Now we know that it has already loaded the register previously with the value of 0. Now 

it is going to test whether count equal to 0, which is true in this case and therefore the 

consumer is going to wait. Essentially, it is going to wait till it receives signal from the 

producer. However, the actual value of count is 1, because the producer has pushed an 

item into the buffer, and thus we see there is lost wakeup that occurs. The consumer has 

missed wakeup signal which the producer has sent. Now there is nothing stopping the 

producer from pushing more items into the buffer. 

So, eventually the entire buffer is full and the producer will then wait for the consumer to 

remove some item. However, this will not occur because the consumer itself is waiting. 

Thus, we have a producer waiting for the consumer to remove an item, while the 

consumer is also waiting because it has missed the wakeup. Thus, we eventually reach 

particular state where both producer and consumer will wait infinitely. We see that using 

three mutexes will not solve the producer-consumer problem. 

(Refer Slide Time: 10:39) 

 

Let us look at another primitive known as Semaphores. This semaphore is 



synchronization primitive it was proposed by Dijkstra in 1965. And semaphores are 

implemented with 2 functions called Down and Up, which we assume is atomic. These 

are the functions and thus requirement is that both these functions need to be atomic. 

There is shared memory location which is termed as S and in the down function the 

while loop will test whether S is less than equal to 0. 

So, as long as S has a value which is less than equal to 0 this particular loop will execute. 

When S takes a value which is greater than 0, then the loop would break and the value of 

that memory location S would be decremented by 1. In the up function which is also 

atomic the value of the memory location S is incremented by 1. So, the down and up 

functions are sometimes called as the P and V functions respectively from there Dutch 

names. And we could also have two different variants of this semaphores, we could have 

a blocking semaphore and a non-blocking semaphore as well. So, a non-blocking 

semaphore is shown over here, essentially it is a while loop which is resulting in a busy 

waiting much like a spinlock. 

On the other hand we can make a small modification and have a blocking semaphore, 

where this particular statement will result in the process going to block state, while signal 

from the up would wake up the process. If the values of s were initially set to 1 then a 

blocking semaphore is similar to a mutex, while a non-blocking semaphore is similar to a 

spinlock. So now, let us see how we produce the semaphore to solve the producer-

consumer problem. 



(Refer Slide Time: 12:55) 

 

In order to solve the problem we require two semaphores; one is known as full. So when 

I say two semaphores it means two memory locations which we specify by this S over 

here. We have two memory locations or two semaphores full and empty. So, full is given 

the initial value 0, while empty is given the initial value N, where N here is the size of 

the buffer. The semaphore full indicates the number of filled blocks in the buffer, while 

the semaphore empty would indicate the number of empty blocks in the buffer. 

In this particular case, where N equal to 6, fill will have a value of 4 because there are 4 

filled blocks and empty will have a value of 2 because there are 2 empty blocks. So, the 

initial states just before the start of execution of the producer and consumer will have full 

equal to 0 and empty equal to N, because there is no data items in the buffer; essentially, 

because the buffer is empty. 



(Refer Slide Time: 14:13) 

 

So let see, how these semaphores are used. Let us look at the producer, so the producer 

produces an item and we will take this particular example where a fill is 4 and empty is 

2, and then when the item is produced it invokes the down semaphore. The down 

semaphore, as we have seen will down the empty semaphore, so empty will go from 2 to 

1. So, this is an atomic operation. 

(Refer Slide Time: 14:52) 

 



Then the next step in the producer used to insert an item, so the new item gets inserted 

into the buffer, and then there is an up full that is the semaphore full will get a value of 5. 

(Refer Slide Time: 15:08) 

 

Similarly, in the consumer part is as follows. First there is the down full, so, the value of 

full will go from 5 to 4 as seen here. 

(Refer Slide Time: 15:25) 

 



Then an item is removed from the buffer and the value of empty is set to up. So, up the 

value of empty will become 3, and then the consumer will consume the particular item. 

(Refer Slide Time: 15:41) 

 

Now let us see both the producer and consumer and the case of a full buffer. We have, let 

us assume that the buffer is full, so in such a case the full value has 6 which are equal to 

N, while the empty has a value of 0 indicating that there are no empty blocks in the 

buffer, and full of 6 indicates that there are 6 full blocks in the buffer. The producer as 

usual will produce an item and then it will down empty. Now you see that empty has a 

value of 0. If you go back to the down function of the semaphore it would cause the 

while statement to keep executing continuously. So, the producer would be blocked or 

waiting on this particular down semaphore. 

Now, after a while when the consumer begins to execute, so it will execute the down full; 

as a result, it is going to consume one particular element, so it is going to decrement the 

value of full as will be seeing an over here, so full goes to 5. And then it is going to 

remove an item and it is going to up empty. 



(Refer Slide Time: 17:00) 

 

Now empty is set to 1, and then of course it is going to consume the item. Now setting 

empty to 1 would result in the loop in the semaphore down to wakeup or for the loop in 

the semaphore to complete to break, and then the producer will set empty back to 0 and 

insert the item into the buffer. Then the full value is set to 6 yet again. 

(Refer Slide Time: 17:31) 

 



In this week, the semaphores full and empty are used to solve the producer-consumer 

problem when the buffer is full. 

(Refer Slide Time: 17:49) 

 

Similar analysis can be made when the buffer is empty. In such a case the values of full 

and empty are 0 and 6 respectively. 

(Refer Slide Time: 18:03) 

 



So, one thing we have not taken care about so far in the producer and consumer code is 

that, we are not synchronizing access to this particular buffer. As a result it could be 

possible that the producer may be inserting item into the buffer and at exactly the same 

time the consumer may be removing an item from the buffer. In order to prevent such a 

thing to occur we use a mutex to synchronize access into a buffer. 

Before accessing this particular buffer or the producer as well as the consumer would 

need to lock the mutex, and after accessing the buffer we unlock mutex needs to be 

invoked. As a result of this mutex we can be guaranteed that only one of these two 

processes are executing in this particular critical section, that is are accessing the buffer 

at any given instant of time. 

So, now there are several other variants of the producer-consumer problem, and there are 

various schemes in which semaphores could be utilized to solve these various problems. 

But, for this particular course we will stop with this particular example. 

Thank you. 


