Introduction to Operating Systems
Prof. Chester Rebeiro
Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Week - 01
Lecture — 02
PC Hardware

Hello. A lot of how the operating system works depends on the underlined hardware.
Essentially, as we have seen in the previous video the operating system is in charge of
managing the hardware. So, before we go any further with how an operating system
works and how the OS functions, let us take a brief background about the PC hardware,

essentially we will look at how a computer hardware is designed.

(Refer Slide Time: 00:50)

CPUs

Processor
i386

.".

i,

So ,we know that the heart of any system is the CPU; and the CPU is interfaced to
several devices such as the VGA card, a hard disk, a keyboard, RAM, mouse and so on.
Now, in order that all these devices work with single processors - what is required, is

addresses.

(Refer Slide Time: 01:19)

Everything has an address

! 0x3c0:0x3cf
0xB0:0x6f

Processor

i386 ["L

\-. 0x110:0x117

:
¢ \'
0x0 : 0x200000 0x60:0x6f

Essentially, each device in the system would have a unique address. And it is ensured
that no two devices in the system would have the same address. For instance, we would
have the hard disk which is present from the address range 0x1f0 to 0x1f7. So, what this
means is that when the processor sends out an address on its address bus, the hard disk
would identify that the address is within this particular range and therefore, it will

respond.

All other devices will then ignore that particular transfer on the processor bus, because it
does not fall in its particular address range. For example, if the processor puts out the
address 1f2 then only the hard disk will respond, because Ox1f 2 falls within this
particular range of the hard disk. So, if you look at something else like the mouse, which

has address range of 0x60 to Ox6f, it is not going to respond to the processors request.

(Refer Slide Time: 02:47)

Address Types
* Memory Addresses
* |0 Addresses
* Memory Mapped |0 Addresses

Now in systems, there are 3 types of addressing which are generally used. One is call the
Memory Addressing, next is the 10 Addresses, and the third is the Memory Mapped 10

Addresses. So, we will look at each of these Types of Addresses more in detail.

(Refer Slide Time: 03:10)

Address Types :
(Memory Addresses)
» Range : 0 to (RAM size or 2%-1)
* Where main memory is mapped
- Used to store data for code, heap, stack, OS, efc.
+ Accessed by load/store instructions
I | RAM

Let us start with the memory addresses. So, the memory addresses and almost system

would have a large amount of such memory addresses correspond to addressing the
RAM. Each memory unit in the RAM is given a unique address. For instance, a RAM in
a typical Intel system with 32 bits could be of size at most 2 power 32 that is a Intel
system with a with a 32 bit processor could have at most 2 power 32 or 4 gigabytes of
RAM. So, each and every memory unit in this RAM has a unique address. So, this
memory unit could be as small as a single byte, or in some systems it could be a word
that is it could be of 16 bits or 32 bits.

Now, how is this RAM used? So, essentially the RAM is configured in this particular
way as shown over here, and this configuration is especially for IBM PC compatible
Intel machines. So, this RAM as | mentioned has addresses to access each part of the
ram, and the RAM could be as large as 4 gigabytes. The addresses from 0x0 to 640 kb
represented in hexadecimal as a followed by 0000 is known as the low memory. So, in

this particular memory was used in legacy computers like the 8086, 8286 and so on so.

The old operating systems like ms dos would use this particular low memory. So, above
this low memory from 640 KB to 768 KB, all addresses would pertain to the VGA
display. So, in again this is a legacy issue, where this particular area in the memory
would correspond to the VGA display. This means to say that any ASCII characters
placed in this particular area would then be taken by the video card, and display it on to
the screen.

The region from 768 KB to 960 KB was known as the 16 bit expansion RAMSs, so these
also were legacy aspects present in legacy computers. And it is pertaining to every device
that is used. Essentially, in the previous generations of computers in the early eighties to
early nineties, the devices that were attached to the computer could have what was
known as expansion ROMs, ROMs are the read only memory. And these ROMs could be
accessed or rather these ROMs could be addressed within this particular memory region.
Now what is important for us and what we still use in the present Intel systems that we
use for a desktops and laptops is this particular region from 960 KB to 1 MB. So, this

was where the BIOS recite.

So, as many of you would know, BIOS is the basic input output system; and it is read

only memory which is present on your system. And it ensures that your system boots
correctly and it also ensures that the operating system gets loaded. The area of the RAM
essentially all memory addresses below 960 KB is typically not used in modern day
systems. While the area from 960 to 1 MB that is 960 KB to 1 MB is used by the bios
and only used during the booting of the system. What is actually used in modern day
system is the RAM above this 1 MB region that is starting what was known as the
extended memory. And this extended memory could go far as the amount of RAM is

present in the system.

For instance, if you have 4 gigabytes of RAM or 8 or 16 gigabytes of RAM then this
extended memory will extend up till that particular region. The parts or the addresses
above this RAM area will be generally unused. So, as we will see in the later classes, in
this particular course, we will see how the operating system loads itself starting from this
1 MB region. We would also see how the BIOS is going to be used to boot the operating
system. Now, as we know this particular RAM is also used to contain various aspects of
the applications that we execute. For instance, the code segment or the instruction
present in the program that you execute, the heap, the stack as well as the operating
system recite in this particular memory. Essentially all of them will recite above this

extended memory part.

(Refer Slide Time: 09:41)

e

Address Types :N(IQ Ports)

ssmren

* Range: 0to 2'6-1
+ Used to access devices

+ Uses a different bus compared

to RAM memory access

— Completely isolated from memory ..
+ Accessed by infout instructions ~»

inb $0x64, %5al
outh %al, S0x64 " r———

[ref : hitp:/fbochs sourceforge.net/techspec/PORTS.LST

The next type of addressing is the 10 addresses. Essentially in legacy computers like the
8086 and the 8088 and 8286, there was a separate memory region for devices. 10 devices
like keyboards, mice, hard disks and other programmable devices like a programmable
interrupt controller could be mapped. So, unlike the previous addressing that we seen
that is the memory addressing, so the 10 addressing could be from 0 to just 2 power 16
minus 1. This is roughly around 64 kilobytes and the IBM PC standard would define

what the uses of certain addresses are.

So, the IBM PC standard is a standard which was followed to develop the systems like
especially the desktop systems and a certain servers. And this standard mentioned what
devices should be present in what 10 addresses. For instance, it mentions that the
keyboard should be present between 60 to 6F. So, the 10 address - 60 to 6F.

In a similar way, the DMA controller would be present from C 0 to DF. So, the other
things like ASCII or a hard disk - a primary hard disk present in your system will be
present from 1f0 to 1f7. So, in this way, several devices had very specific addresses in
the system. So, what is the use of such having such a specification is that we obtain
compatibility. So, even now when you boot your laptop or your desktop PC, which is an
Intel system or an AMD system, the bios will expect several things like it will expect that
there is a keyboard which is connected to your system, and the keyboard is present or
rather the keyboard is accessible from the address range 60 to 6F. Similarly, it would
expect other things like the programmable. A programmable interrupt controller to be

present from the 10 addresses 20 to 3F.

Essentially, what is maintained even in the modern systems is the backward
compatibility to the old computers that we used. So, the memory addressing as we are
specified over here, even though a lot of it is legacy and what was used quite a bit in the
early 80's and 90's, even now since Intel and IBM followed the backward compatibility.
A lot of the systems that we use for a laptops and desktops still follow this particular
hierarchy. Now one problem, which was noticed with this type of 10 addressing, what is
the limited amount of address range that was permitted? So, for instance over here we
had at most 64 KB of addresses that could be present. So, this means that the number of

devices that could be connected to this system through the 10 addressing was limited.

(Refer Slide Time: 13:53)

Memory Mapped /0O

+ Why?
- More space (=

* Devices and RAM share |/ """~
the same address space || owe |

* Instructions used to (i vert o e oL 2
access RAM can also be || e vsor
used to access devices.
- Egload/store

e, <~ DXFFFFFFFF (4G3)

Memory Map

In order to extend this, what was used was known as the memory mapped 10. In this
particular memory mapped 10, hardware devices would then connect or would be then
mapped into regions in the memory addressing itself. As we have seen before, the RAM
or the random access memory of the system would be addressed from the location 0 and

extend upwards until the end of the RAM.

So, typically in the systems of the early and late nineties, we would have something like
256 MB, 512 MB or at most 1 GB of RAM. So, the space above this was unused. So,
what devices would do is they would map a certain region in this particular part of
memory into their devices. What this means is that when the processor generates an
address in this upper region of memory that is a high address in this upper region of
memory then that particular address would be directed to this specific device and not to
the RAM.

(Refer Slide Time: 15:13)

Who decides the address
ranges?

+ Standards / Legacy
- Such as the IBM PC standard
— Fixed for all PCs.

- Ensures BIOS and OS to be portable across
platforms

+ Plug and Play devices

- Address range set by BIOS or 0S

- A device address range may vary every time the
system is restarted

So, we have seen various address ranges that have been allocated to RAM such as the
low memory region, the location where the bios should be present the location where
various devices like the keyboard, hard disk and so on should be present. Now who
decides these particular address ranges? Essentially these address ranges have been
decided by standards and a lot is impacted by legacy computers of the eighties and
nineties. So, one very famous standard was the IBM PC standard. Essentially, this
particular standard was fixed for all PCs that are all personal computers right up from the

eighties would be compatible with IBM PCs standard.

Again even many of the systems that we use today that is our Intel and AMD laptops as
well as desktops are backward compatible to this IBM PC standard. So, the reason for
this IBM PC standard of for that matter, why a standard was required was to ensure that

the bios and operating system is portable across platforms.

So, for instance if | would write up an operating system today my operating system
would know exactly where the keyboard should be present irrespective to one of what
IBM PC compatible system, it is going to be loaded on. So, I could make a lot of
assumptions about where various devices are present in the system. So, having such a

standard would essentially ensure that the software that we write especially the software

that interacts with the hardware such as the bios and the operating system will be
portable across several different platforms.

The other way in which addresses are decided upon is by something known as plug and
play. So, plug and play devices do not have any fixed address location as we have seen
for things like the keyboard or VGA, memory and so on. But rather when the system
boots and when the bios begins to execute, the bios will then detect the presence of some
particular hardware in the system. For instance, the bios would detect that the system has
a network card present; it would then ask the network card as to how much memory it
requires, and what type of memory it requires whether it is IO memory or a memory
address. Based on this, the bios will then allocate a portion of memory for that particular
network card. So, the allocation would be fixed of for each boot of the PC, but on the

other hand the location in the address map would vary across the each boot.

(Refer Slide Time: 18:38)

Processor| | Processor| | Processor| | Processor
1 K 3 4
< I I I I I > front side bus
Memory bus
DRAM e Dot Bidge
I PCl Bus 0
e 4 I 1
South Bridge! PCI-PCI VGA Ethemet use
Bridge Controlier | | Controlier
Spisul ! E
Us8
U |) [ose
ore L doka | | b device
= | ..o %
y
Devices P52 4 A \
board, mouse,
PC speaker)

So, this particular slide here shows how a typical PC is organized. So, we may have
multiple processors present in the system. So, this could be 1 processor, 2 processor, 3 or
4 and so on. So, it could also be possible that each of this processor have multiple cores
inside them; and each core has 2 or 4 threads. Now all these processors are connected to

each other through what is known as the front side bus. So, there is always a sharing

between all processors with respect to the front side bus. And now an important device
which connects to the front side bus is known as the north bridge or the chip set. So, the
north bridge would interface with the memory through what is known as the memory

bus; and it also interfaces with the PCI bus.

So, on the PCI bus you could have several devices like the Ethernet controller, USB
controller. And the USB controller could have many USB devices, which you see at the
front or the back of your desktop. Now as you would notice over here, the USB devices

are connected in a tree like structure.

Now the PCI bus also has a hierarchy type of structure; and each bus for instance, in this
case, PCI bus 0 which is a closest to the north bridge. And you have in this way a PCI
bus 1, which is connected to the north bridge through the PCI bus 0. So, the interface
between bus 0 and bus 1 is through a PCI to PCI bridge. In addition to this, there is what
is known as the south bridge. And this is south bridge interfaces with the PCI bus or you
could have a special protocol or a special connection with the north bridge which is
known as the DMI bus. So, in the south bridge, various legacy devices like the PS 2

devices keyboard, mouse, PC speaker, and so on are connected.

(Refer Slide Time: 21:03)

The x86 Evolution (8088)

. 8088 General Purpose Registers
~ 16 bit microprocessor 15 87 0 16bt
- 20 bit external address bus L .
+ Can address 1MB of memory | (B: SLL ?:
- R?g}s.ler.srare 16 bjl [o .
Leneral F 1equsiers B
AX, BX, 9
Point C | DI
BP, SI, DI, SP 5P
Instruction Painter: IP
Segment Registers GPRs can be accessed as
CS, 85, 08, ES 8 bit or 16 bit registers
- Accessing memory Eg.
(segment_base << 4) + offset mov $0x1, %ah ; 8 bit move

eg:(CS<<d)+IP mov $0x1, %ax ; 16 bit move

Let us start with how x86 or the Intel x86 process has evolved. So, it all started with the
8088 processor or the 8088 processor as it was generally known as. So, this was a 16 bit
microprocessor which had a 20 bit external address bus. And therefore, could address up
to 1 MB of memory. So, how did we get this 1 MB is essentially 2 power 20, so that 2
power 20 is 1 MB. So, the registers within the 8088 where 16 bit; and it could be divided
into various types such as the general purpose registers that is the AX, BX, CX and DX.
We had pointer registers which were used to point to string which are stored in memory,
so these were the base pointer, stack index, destination index and the stack pointer. So, as
we know that the base pointer is used to point to a frame present in the stack, where the
stack pointer is used to point to the bottom of the stack.

Then we have the instructor pointer, which points to the instruction that is being
executed. And you had several segment registers such as the code segment, stack
segment, DS and ES segment registers. Now, in order to load or store an instruction or
data in memory what the 8088 processor would do was, it could take a segment base that
is one of the segment registers which forms the base, it could left shifted by four and add

an offset.

For instance, in order to fetch one instruction from the memory into the processor, the
CS register would be used. So, CS register would be this for the code segment. It would
be left shifted by 4. And the IP of the instruction pointer would be added to that. In this
way, even though there are the registers used are 16 bit, so each of this registers CS and
IP are 16 bit, still by shifting it by 4 bits and adding the IP. It was possible to address 2

power 20 memory locations.

(Refer Slide Time: 23:38)

The x86 Evolution (80386)

- 80386 (1995) General Purpose Registers
o General-Purpose Registers

- 32 b!lmlcruprocessor " 1615 87 0 164 3t

- 32 bit external address bus Tm | M| M e

+ Can address 4GB of memory B B | BX s

- Registers are 32 bit o | a o e

Gene LW | oo | mxoex

E EDX, [@ N
Point [&l
; TR] &l
£8P 651 E01 9 - o
Segment Registers GPRs can be accessed as
CS, 85,08, ES 8, 16, 32 bit registers
~ Lot more features eg.
+ Protected operating made mov $0x1, %ah : & bit move
 Virtual addresses mov $0x1, %ax ; 16 bit move
mov $0x1, %eax ; 32 bit move

One big step in the Intel systems came when the 80386 was invented in 1995, so these
are 32 bit microprocessors. So, this particular processor had a 32 bit external address bus.
So, therefore, it could address 2 power 32 memory addresses. So, this was 2 power 32 is
4 gigabytes of memory. So, what this means is that system could have up to 4 gigabytes
of RAM present in it. Now the same amount of registers which were present in 8088 are
also present here except that now it has it is extended from 16 bit to 32 bit, and because
of this extension the registers are called EAX, EBX, ECX, EDX, EBP, ESI, EDI and so

on.

There were also a lot more features like the protected operating mode as well as virtual
and segmentation schemes, which were present. So, one thing you would notice is that
while all the registers were extended to 32. The segment registers continued to be 16 bit.
Now Intel ensured that even though we switched from a 16 bit processor to a 32 bit
processor, still backward compatibility with the old 8088 systems was maintained. This
meant that any software which was written in an 8088 or 8086 processor would straight

away run in an 80386 without much of a problem.

To ensure this, even though the registers were extended from 16 bit to 32 bit still

programs could access the registers as if they were 16 bits only available. For example,

the AX, BX, CX, DX would access the lower half of the extended registers that is
register with 0 to the bit 15. So, this particular feature in the 80386 processor was taken

forward to the 486 Pentium and so on.

(Refer Slide Time: 26:10)

The x86 Evolution (k8)

« AMD k8 (2003)
- RAX instead of EAX
- A86-64, x64, amd64, intel64: all same thing

+ Backward compatibility
- All systems backward compatible with 8088

Now more recently in 2003, there was the next big step in the x86 Evolutions. So, this
was when the AMD k8 was introduced. So, this k 8 moved from a 32 bit processor to a
64 bit processor. As a result, the registers which were known as the extended registers
and where of 32 bit, where now extended further to a 64 bits. So, the EAX register which
was previously known called in the 32 bit platforms like the 80386 was now called the
RAX register, which essentially was for 64 bit. In this way, other registers were also
extended to 64 bits. So, in spite of extending from 32 to 64, the companies Intel as well
as AMD ensured backward compatibility that is a program written in 8088 would still

under certain circumstances will be able to run in the 64 bit platforms as well.

Thank you.

