
Introduction to Operating Systems
Prof. Chester Rebeiro

Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Week – 05

Lecture – 22
Completely Fair Scheduling

In this video lecture, we will look at the completely fair scheduler. So, the completely

fair scheduler or CFS scheduler is the default scheduler used in Linux kernels in the

latest versions.

(Refer Slide Time: 00:29)

The CFS scheduler has been incorporated in the Linux kernel since version number

2.6.23, and has been used has the scheduling algorithms since 2007. So, it was based on

the Rotating Staircase Deadline Scheduler by Con Kolivas. So, the advantage of the CFS

scheduler compared to the one scheduler in particular is that there are no heuristics

which are used and there is very elegant handling of IO bound and CPU bound

processes.

Essentially the interactive and non-interactive or batch processes are very easily fit into

this particular scheduler. So, we will see a very brief overview of the CFS scheduler.

Now as the name suggest the CFS scheduler or the completely fair scheduler aims at

dividing the processor time or the CPU time fairly or equally among the processes.

(Refer Slide Time: 01:34)

In other words, if there are N processes present in the system or present in the ready

queue and waiting to be scheduled, then each process will receive 100 by N percentage

of the CPU time. So, this is the ideal fairness. Let us take a small theoretical example for

this ideal fair scheduling.

Let us consider the four processes A, B, C and D, and having the burst time 8

milliseconds, 4 milliseconds, 16 milliseconds and d has the 4 milliseconds respectively.

So, what we will do is let us just divide the time into quanta of 4 milliseconds slices. And

what we will now see is how the ideal fair scheduling should take place. So, in an ideal

fair scheduling, at the end of say this 4 milliseconds epoch, all processes which are in the

ready queue should have executed for the same amount of clock cycles.

For instance, if we look at this particular first epoch, so it has 4 milliseconds, and we

have four processes are present in the ready queue; therefore each process should get 4

divided by 4 that is 1 milliseconds of processor time. Therefore, A, B, C and D will

execute for 1 millisecond. In a similar way for the second cycle, there are four processes

again, and therefore, these four processes get an equal share of the slice. So, each process

executes a 1 millisecond again. So, therefore, in all A has executed for 2 milliseconds, B

for 2, C for 2, and D for 2 milliseconds. Similarly, for 3 and for 4, so at the Nth of the

fourth epoch, we see that processes B and D have completed. So, what happens next?

(Refer Slide Time: 03:32)

Now after B and D completes, we see that we have two processes present in the ready

queue that is A and C also the time quanta remains as 4 milliseconds. So, now each

process gets 4 divided by 2 that is 2 milliseconds of the processor time. Therefore,

process A executes for 2 milliseconds; similarly process c executes for 2 milliseconds.

Similarly, for the next epoch, A executes for 2 more milliseconds, and c executes for 2

more milliseconds. So, both have executed for 8 millisecond; and as A result, A has

completed executing.

(Refer Slide Time: 04:16)

Now, the last part we see that only C is present in the ready queue and it is the since it is

the only process which is present in the ready queue. So, it is given the entire slot of 4

milliseconds. So, C executes for 4 milliseconds and followed by the final slot where it

executes for another 4 milliseconds to complete its burst time. So, what you see in this

ideal scheduling is that in each epoch or in each slot, the scheduler is trying to divide the

time equally among the processors, so that asymptotically all processes execute for the

same amount of time in the CPU. So, you see that all processes execute for 4

milliseconds, here at the end of this all processes execute for 6 milliseconds and 8

milliseconds and so on. How is this ideal fair scheduling incorporated in this CFS

scheduler.

(Refer Slide Time: 05:21)

So, this is done by what is known as the virtual run times. In each processes PCB that is

in each processes process control block an entry is present known as the vrun time or the

virtual run time. At every scheduling point, if process has run for t milliseconds then it is

vruntime is incremented by t, vruntime for a process, therefore will monotonically

increase.

(Refer Slide Time: 05:51)

Now, the basic CFS idea is whenever there is a context switch that is required to be done

always choose the task which has the lowest v runtime. So, this is maintained by a

variable called min underscore vruntime that is this is a pointer to the task having the

lowest virtual run time. So, then time slice required is the dynamic time slice for this

particular process is computed and the high resolution timer is programmed with this

particular time slice.

The process begins to then execute in the CPU. When an interrupt occurs again a context

switch will occur if there is another task with a smaller run time. So, you see that this

particular process which is selected to run over here will continue to run until there is

other task with a lower run time.

(Refer Slide Time: 06:51)

Now in order to manage this various tasks with various run times the CFS scheduler with

quite unlike the schedulers which we seen so far do not use ready queue; instead, it uses

a red black tree data structure. So, in this red black tree or rb tree data structure, each

node in the tree is represented as a runnable task. Nodes are ordered according to their

virtual run time.

Nodes on the left have a lower run time or lower vruntime compared to nodes on the

right of the tree that is if you see these particular things, so each node is a task and each

node has a number written over here which is the virtual run time for that particular task.

So, you see that each task on the left has a lower virtual run time compared to task on the

right.

Now, the left most node of this rb tree is the task which has the lowest vruntime or the

lowest virtual run time. So, in this particular case, it is this particular node which

corresponds to the task having the low lowest virtual run time, therefore the scheduler

should pickup this task to run next.

In order to find this task, there are two ways which are possible; one is you could

traverse a tree and go towards the left until you reach a leaf or the other way is we could

directly have a pointer like the min underscore vruntime which points to the left most

node of the tree. So, whenever the scheduler needs to make a context switch, it would

just need to look into where min vruntime points to and pick out this particular task. This

quite naturally will be the lowest or the task with the lowest virtual run time.

(Refer Slide Time: 08:48)

So, this choice of the lowest vruntime is can be done in order one and therefore,

independent of the number of processes present in the r b tree. So, at the end of the time

slice, if this process which is currently executing is still runnable that is it has not

blocked on an IO or it has not exited then it is new virtual run time is computed based on

the amount of time it has executed in the CPU. Then it is inserted back into the tree

corresponding to its virtual run time. So, a process in other words would be picked out

from the left most part of the tree because it has the lowest virtual run time and then it

would execute in the CPU for some time say t milliseconds.

And at the end of its time slice, its virtual run time would be incremented by t values,

and it would be inserted again into the tree. Now it will not go to the left of the tree, but

it will rather be inserted somewhere in the middle towards the right. Thus as the virtual

run times increment, a process moved moves towards from the left towards the right.

This ensures that every process gets a chance to execute because it ensures that at one

point or the other, every process is going to have the minimum virtual run time in this

particular tree and therefore, will get executed thus starvation is avoided.

(Refer Slide Time: 10:24)

So, why do we choose the red black tree or why did the Linux kernel choose the red

black tree for the CFS scheduler. So, one obvious reason is the rb tree is self balancing.

So, no path in the tree will be twice as long as any other path because of the self

balancing nature of the tree. Due to this, all operations will be order of log n thus

inserting or deleting tasks from the tree can be quick and done very efficiently.

(Refer Slide Time: 10:55)

Now how priorities implemented in the CFS scheduler. So, essentially, CFS does not use

any exclusive priority based queues as we have seen in the o one scheduler, but rather it

uses priorities to only weigh the virtual run time.

For instance, if a process has run for t milliseconds then the virtual run time is

incremented by t into weight based on the nice value of the process, essentially based on

the static priority of the process. So, a lower priority implies that the time moves at a

faster rate compared to that of a high priority task. So, essentially what we are doing is

we are providing a weight for the time that it is executes that is we are either accelerating

the time or decelerating the time at which a process runs. So, this weight is used to

implement priorities in the CFS scheduling algorithm.

(Refer Slide Time: 12:01)

Next we will look at how the CFS scheduler distinguishes between an IO bound and

CPU bound process. So, essentially this distinguishing is done very efficiently. It is based

on the fact that IO bound processes have a very small CPU burst, and therefore it is

vruntime does not increment very significantly. As a result of this, it is more often than

not appearing in the left part of the rb tree. Therefore, it gets to execute more often than

other processes. This is because of the fact that as we mentioned as time progresses each

process in CFS scheduler is picked up from the left most nodes and executes and then it

is placed on the right; therefore, in general every process moves towards the right part of

the rb tree present in the scheduler.

Now, for the IO bound process since the vruntime does not change too much or

increments just by a small margin, it does not move to the extreme right, but rather it is

still stays towards the left part of the tree. Thus very soon, it will soon find itself with the

as a process with a lowest vruntime and will have a chance to execute again in the CPU.

Now as a second effect due to the small vruntime or the small virtual run time of the IO

bound processes, it is given a larger time slice to execute in the CPU. Thus we see the IO

bound and CPU bound processes are very well distinguished quite inherently by the CFS

algorithm.

(Refer Slide Time: 13:50)

When a new process gets created, it gets added to the red black tree. Now it is starts with

a initial value of min vruntime therefore, gets placed to the left most node of the tree and

this ensures that it gets to execute very quickly. So, as it executes depending on the

amount of time it executes whether it is an interactive or a CPU bound process, its

position within the rb tree would vary. This was a brief introduction to the CFS

scheduler, which is the default scheduler in current versions of the Linux kernel.

Thank you.

