
Introduction to Operating Systems
Prof. Chester Rebeiro

Department of Computer Science and Engineering
Indian Institute of Technology, Madras

Week – 05

Lecture – 18
CPU Scheduling

Hello. In this lecture, we will look at CPU Scheduling Algorithms.

(Refer Slide Time: 00:22)

We had seen in operating systems that a scheduler present would choose a particular

process from the ready queue and that process is assigned to run in the processor. Now

the question that we were going to analyze now is how the scheduler should choose the

next process; essentially, how the scheduler should choose a process to run on the CPU

from the existing queue of ready processes.

(Refer Slide Time: 00:53)

Now to analyze this, we first look at execution phases of a process. Now any program

has been known to have two phases of execution; one is when it is actually executing

instruction which is known as a CPU burst, while the other is when it is blocked on an IO

are not doing any operations, so in this particular case, the CPU is in idle.

Thus, as we look with over time, a particular process would have some amount of CPU

burst in which it execute instructions on the processor, then it would have and some idle

time in which it is waiting for a IO operation, then they would be burst of CPU time and

so on. Thus, there is always this inter-reading between CPU burst and idle time that is a

waiting for an operation.

(Refer Slide Time: 01:51)

So, based on this cases of execution one could classify processes into two types. One is

the IO bound processes, while the other is the CPU bound process. Why do you make

this distinction between IO bound and CPU bound processes; essentially, this is from a

scheduling perspective. We would like to give you IO bound processes a priority with

which the allocated the CPU; essentially, we want that IO bound processes with lesser

time for the CPU compared to CPU bound processes. So, why this is required, we can

take with an example.

Suppose we are using a word processor such as note pad or vim and we are giving this

IO bound process a very low priority. Now, suppose a user presses a key, because it as a

low priority it does not get the CPU to very often and therefore, it would take some time

before that key pressed by the user appears onto the screen. So, this may be quite

uncomfortable for the user, therefore we would like to give the IO bound process such as

the word processor higher priority with which it will get the CPU, so that the user

interaction with the CPU comes more comfortable.

On the other hand, if you look at CPU bound processes, we could give a lower priority,

now for instance if you take one of this applications the CPU bound applications like for

instance say let us say gcc that is compiling a program and let us say you compiling a

large program which takes 5 minutes. Now it will not effect this user much if the time

taken to compile that particular program increases from 5 minutes to say 5.5 minutes.

Thus, a CPU bound processes could work with the lower priority. This classification

between IO bound and CPU bound is not a rigid classification that is a process could be

an IO bound process at one time, and after some time it could be behave like a CPU

bound process.

So, to take an example of a process which behaves both like an IO bound as well as CPU

bound, you could take for instance Microsoft excel. When we are actually entering data

into the various cells in excel, it acts as IO bound process. So, it behaves like an IO

bound process with small CPU burst and large times of IO cycles. While on the other

hand when you are actually computing some statistic on the data entered, Excel will

behave like a CPU bound process, where there is a large portion of CPU activity or the

time taken to actually operate on that particular data.

(Refer Slide Time: 04:38)

Now, let us come back to the question about the how the CPU scheduler should choose

from the queue of ready processes, the next process to execute in the CPU. There could

be several ways in which the scheduler could makes this choice; essentially, they could

be several CPU scheduling algorithms which would looking into the queue and make a

particular decision.

(Refer Slide Time: 05:05)

In order to compare these various scheduling algorithms, operating systems text books or

operating system researches defines several scheduling criteria. So, these criteria could

be used to actually to compare various scheduling algorithms to see the advantages and

disadvantages of each of them. Let us go through each of these scheduling criteria one by

one. The first scheduling criteria are the CPU utilization. The scheduling algorithms are

designed in such a way so as to maximize CPU utilization. In other words, the CPU

should be idle as minimum time as possible.

The next criteria, we will look at is the throughput; essentially, scheduling algorithms

would try to complete as many processes as possible per unit time. The third criteria are

the turnaround time; and these criteria looked at from a single process perspective. So,

turnaround time is defined as the time taken for a single process from start to completion.

The fourth criteria are response time. So, this defined as the time taken from the point

that when the process enters into the ready queue to the point when the process goes into

the running state that is the time taken from the instant the process enters the ready queue

to the time the CPU begins to execute instruction corresponding to that process. Another

criteria, is the waiting time. Now this criteria, is based on the time taken by a process in

the ready queue. Now as we know processes ready to run are present in the ready queue

and it is required that they do not wait too long in the ready queue. So, scheduling

algorithms could be designed in such a way that the waiting time of the average waiting

time in the ready queue is minimized.

The final criteria we will see now is fairness. The scheduler should ensure that each

process is given a fair share of the CPU based on some particular policy. So, it should

not be the case that some processes, for instance, takes say 90 percent of the CPU while

all other processes just get round 10 percent of the CPU. So, all these criteria need to be

considered while designing a scheduling algorithm for an operating system.

A single scheduling algorithm will not be efficiently being able to cater all this criteria

simultaneously. So, therefore, scheduling algorithms are therefore designed for to meet a

subset of these criteria. For instance, if you consider real time operating system the

scheduling algorithm for that system would for instance be designed to have minimum

response time; other factors such as CPU utilization and throughput may be of secondary

importance.

On the other hand, desktop operating system like a Linux will be designed for fairness,

so that all applications running in the CPU or in the system are given a fair share of the

CPU; criteria such as response time may be less important from that perspective. So, we

will now look at several scheduling algorithms starting from the simplest one that is the

first come first serve scheduling algorithm and go to more complex schedule in

algorithm as we proceed.

(Refer Slide Time: 08:42)

Let us look at the first come first serve of the FCFS scheduling algorithm. The basic

scheme in this case is that the first process that request the CPU would be allocate the

CPU; or in other words, the process, which enters into the ready queue would be

allocated the CPU. So, this is a non preemptive scheduling algorithm which means that

the process once allocated the CPU will continue to executive in the CPU until it burst

cycle completes.

(Refer Slide Time: 09:19)

Let us see this with an example. Let us say we have system with four process are

running; the processes are label P 1, P 2, P 3, P 4. And they have an arrival time, so the

arrival time is present in the second column. The arrival time is defined as the time when

these processes enter into the ready queue. So, for this particular very simple example, so

we will consider that all processes enter the ready queue at the same time that is at the

0th time instant. The third column is the CPU burst time, so it gives the amount of a CPU

burst for each process.

For instance, P 1 has a CPU burst of 7 cycles; P 2 has a burst of 4 cycles. Thus, this

particular table we have like four processes, which all enters simultaneously into the

ready queue at the time instance 0; and they have different CPU burst time for instance P

1 has 7 cycles; P 2 - 4 cycles; P 3 - 2 cycles; and P 4 - 5 cycles.

Now, we will see how these four processes get scheduled into the CPU or how these four

processes get allocated the CPU. Since, all of these processes arrive at the same time the

scheduler does not actually have a choice to make. So, he would pick randomly a

particular ordering. For instance, let us say the scheduler picks P 1 to run, so P 1 runs for

7 cycles; and when it completes, the scheduler picks P 2; and P 2 runs for 4 cycles. After

P 2 completes its burst, and P 3 executes in the CPU for 2 cycles; and then finally, P 4 is

scheduled into execute for 5 CPU cycles. So, this is represented by a Grantt chart.

So, a Grantt chart is a horizontal bar chart developed as a production tool in 1917 by

Henry L Grantt who was an American engineer and a Social scientist. So, essentially in a

Grantt chart we have like several blocks over here; and each block represents a cycles of

execution. So, for instance, P 1 executes for 7 cycles, so it has likes 7 blocks – 1, 2, 3, 4,

5, 6, 7. P 2 then executes for 4 cycles, so it given like 4 blocks. Then P 3 executes for 2

cycles, so it is given 2 blocks. And finally, P 4 executes for 5 cycles, so it is given 5

blocks.

So, we would compute the average waiting time for this particular case. We see that

process P 1 enters into the ready queue at the instance 0, and immediately gets to execute

in the CPU. Thus, it does not have to wait at all. The second process P 2 arrives also a 0

that is also arrives at this point, but gets to execute only after P 1 executes that is only

after 7 cycles; thus, it is wait time is for process P 2 is 7. Similarly, the process P 3 which

also enters in the 0th cycle gets to execute only after process P 1 and P 2 completes. In

other words, it has to wait 11 cycles. And the fourth process in a similar way needs to

waits 13 cycles. Therefore, the average waiting time in this particular case is 7.75 cycles.

Now, we can look at other scheduling criteria, which is the average response time. So,

average response time in this case is the same as the average waiting time. The average

response time is the time taken for a particular process to begin executing in the CPU

minus the time it actually enters into the ready queue. So, for instance, P 2 enters into the

ready queue at this instant, but begins to execute in the CPU only after 7 cycles. So,

therefore, the response time for process P 2 is 7. Similarly, process P 3 has a response

time of 11 because it has waited for 11 cycles to actually begin executing in the CPU. So,

on average, the average response time is 7.7 5 just like the average waiting time.

(Refer Slide Time: 14:07)

Now, one characteristic of FCFS scheduling algorithm is that the order of scheduling

matters. In the previous slide that is in this slide we had assume that P 1 executes then P

2 executes then P 3 then P 4, and we have got average waiting time and average response

time 7.75 cycles. Now, suppose we just change the ordering and let us say the ordering is

now as follows that P 2 executes, then P 3 executes then P 4 finally, P 1.

In such a case, if we compute the average waiting time it we see that it gets reduce from

7.75 cycles to 5.25 cycles. Similarly, if you compute the average response time, you will

see that the response time is also 5.25 cycles. In a similar way, you could compute the

other criteria, which we are mentioned over here. And you will able to actually see the

difference with the two ordering schemes.

(Refer Slide Time: 15:13)

Another characteristic of the FCFS scheduling algorithm is the convoy effect.

Essentially, in this particular case we see that all processes wait for one big process to get

off the CPU. So, for instance, in this case, until or other even though all processes enter

the CPU at the same time, all processes have to wait for P 1 to complete only then that

they could be scheduled. So, if we have a large processes over here instance, we have a

process P 1 instead of burst time 7 takes a burst time of say 100, all other processes P 2,

P 3 and P 4 would wait for 100 block cycles before they actually be able to get to execute

in the CPU. So, this is huge drawback of FCFS scheduling scheme.

(Refer Slide Time: 16:10)

However, FCFS scheduling algorithm has several advantages. The first thing is it is

extremely simple. The scheduling algorithm could complete very quickly and therefore,

the time taken by the scheduling algorithm will be very less, and you would end up with

very less contexts delays while changing the contexts. Another advantage of the FCFS

scheduling algorithm is that it is fair. As long as no process hogs the CPU every process

will eventually run; or in other words, as long as every process terminates at some point

every other process in the ready queue will eventually get to execute in the CPU.

Now the drawback or the disadvantage of the FCFS schedulers as we have seen is that

the waiting time depends on the arrival order. So, we have seen the example in the

previous slides. Another disadvantage is that short processes are stuck in ready queue

waiting for long processes to complete; or rather, this is the convoy effect that we have

just looked at.

(Refer Slide Time: 17:19)

Now, let us look at another scheduling algorithm know as the shortest job first

scheduling algorithm. In this particular scheduling algorithm, the job or the process with

the shortest CPU burst time is scheduled before the others. Now if you have more than

one process with the same CPU burst time then standard FCFS scheduling is used. There

are two variants of the shortest job for scheduling algorithm.

The first is the no preemption of variant, while the second one is the shortest job first

with preemption. Now in the SJF with no preemption, the process will continue to

execute in the CPU until its CPU burst completes. In the second variant with preemption,

it may be possible that the process which may get preempted when a new process arrives

to the ready queue. We will see more on this later, but first we will start with the shortest

job first variant with no preemption.

(Refer Slide Time: 18:21)

Let us take the same example that we have seen in the previous case we had the four

processes P 1 to P 4m and all of them arriving at the instant 0 that is at instant 0 these

four processes P 1 to P 4 get into the ready queue. And each of this processes have a

different CPU burst time that is 7, 4, 2 and 1 respectively. Now in the first instant, the

CPU scheduler will look at the various burst times and find the one, which is minimum.

So, in this case we see that P 4 has the minimum CPU burst time, so that were scheduled

first. So, first the process P 4 gets scheduled until it completes, in this particular case it

completes in 1 cycle. Then among the remaining three, we see that P 3 has the lowest

CPU burst time. So, process P 3 gets scheduled and completes till and executes till it

completes its burst. Then P 2 gets scheduled because it has a burst time of 4, while P 1

has a higher burst time of 7. And finally, P 1 gets to executes till completion. Now, the

average wait time, if we compute this is 2.75 while the average response time is also 2.75

as in the wait time case.

(Refer Slide Time: 19:43)

Now let us look at another example of shortest job first without preemption. So, we will

take the same four processes P 1 to P 4 and each of these process have the same burst

time as before that is 7, 4, 2 and 1 respectively. However, they arrive at different instance

that is the moment the instant in which they enter into the ready queue would be

different. So, P 1 enters at the 0th instant, P 2 in the second instant, P 3 at the fourth

instant and P 4 in the 7th instant. Now, this is a slight modification in the Grantt chart,

where in addition to showing which process is executing in the CPU, it also show the

order in which process arrive it shows that the P 1 arrives first, then P 2 in the second

instant, then P 3, finally P 4 in the seventh instant.

Now, when the scheduler begins to execute at this particular instant, the only process that

has arrived at this particular point is P 1 therefore, it schedules P 1 to execute. So, P 1

executes for its entire burst that is of 7 cycles, and then at this particular cycle, the

scheduler enters again or scheduler executes again and this time it has got three

processes to choose from all P 2, P 3 as well as P 4 have arrived in the ready queue.

And out of them P 4 has the shortest burst time therefore, it is chosen for execution.

Therefore, P 4 executes in the CPU, and then P 3 because P 3 has a shortest burst time

than P 2 and finally, P 2 get executed. So, if we compute the average wait time, we see

that it is 3 cycles.

(Refer Slide Time: 21:37)

The advantage of shortest job first scheduling algorithm is that is optimal. It will always

give you the minimum average waiting time. And as a result of this, the average response

time also decreases. The main disadvantage of the SJF scheduling algorithm is that is not

practical; essentially, it is very difficult to predict what the burst time would be. The

another drawback of the SJF scheduling algorithm is that some jobs may gets starve;

essentially if you have a process which has an extremely long CPU burst time, then it

may never get a chance to actually to execute in the CPU.

(Refer Slide Time: 22:19)

Now, we will look at shortest job first scheduling algorithm with preemption. So, this is

also the shortest remaining time first. The basic idea in this algorithm is that if a new

process arrives into the ready queue, and this process has a shorter burst time than the

remaining of the current process then there is a context switch and the new process gets

scheduled into the CPU. This further reduces the average waiting time as well as the

average response time. However, as in the previous case that is the shortest job first with

no preemption here also it is not practical. Let us understand more on this with an

example.

(Refer Slide Time: 23:02)

Let us take the same example of 4 processes with burst time 7, 4, 2 and 1; and arrival

times at 0, 2, 4 and 7 will develop the Grantt chart as the time processes. So, at the

instant 0, the only process which is present is P 1; and therefore, the scheduler has no

choice, but to schedule P 1 onto the CPU. Thus P 1 would execute for 2 clock cycles.

Now after the second clock cycle the process P 2 has entered into the ready queue. Now

you see that P 2 has a burst of 4 cycles. However, P 1 has a remaining burst of 5 cycles.

So, what we mean by this is that out of the CPU burst time of 7 cycles, P 1 has

completed 2 cycles. So, what is remains is 5. Now the scheduler will see that P 1 has 5

cycles, which is greater than P 2, which has burst of 4 cycles. Therefore, it will do a

context switch and a schedule P 2 to run. So, P 2 will run for 2 clock cycles and then P 3

arrives at the fourth clock instant.

So, at this particular instant, the scheduler will find out that P 3 has burst time of 2

cycles, while P 2 has a remaining a burst time of 2 cycles, we achieve 2 because out of

the 4 cycle burst time for P 2, it has completed 2. So, what remain are 2 more cycles.

Since P 2 the old process which is running on the CPU has a 2 cycle remaining burst

time, and P 3 the new process also has 2 cycles burst time therefore, there is no

preemption and P 2 will continue to execute.

Now after P 2 completes, in this particular case, P 3 executes for 2 cycles, and then P 4

enters now after which if you will verify will not cause any preemption. So, after P 3

completes, the scheduler decides to run either P 4 or P 1. So, we see that P 4 has a burst

cycle of 1 while P 1 has a remaining burst cycle of 5, therefore the scheduler will decide

to choose P 4 over p 1. So, P 4 runs on the CPU and after it completes P 1 will executes

for its remaining burst time.

So, if you compute the average wait time, you see that it reduces to 2.5, while the

average response time reduces considerably to 0.75. However, as we mentioned before

just like the shortest job first this scheduling algorithm is also not feasible to implement

in practice, because it is very difficult to actually identify what the burst time of a

process is and even more difficult to identify what the remaining burst time of the

process would be.

(Refer Slide Time: 26:08)

Now we will look at another scheduling algorithm known as the round robin scheduling

algorithm. So, essentially with the round robin scheduling algorithm, a process runs for a

time slice that is the process executes for a time slice and when the time slice completes

it is moved on the ready queue. So, in order to achieve this round robin scheduling

algorithm which is also a preemptive scheduling algorithm; now in order to achieve

round robin scheduling, we need to configure the timer in the system to interrupt the

CPU periodically; at every timer interrupt, the kernel would preempt the current process

and choose another process to execute in the CPU.

(Refer Slide Time: 26:50)

Let us discuss the round robin scheduling algorithm with an example. So, one difference

with respect to the other scheduling algorithm that we have seen so far is the notion of

time slice. So, this is the Grantt chart. So, especially see that periodically in this case

with a period equal to 2 that is we have keeping a time slice equal to 2, there is a timer

interrupt that occurs and the timer interrupt would result in the scheduler being run and

potentially another process being scheduled into the CPU. So, a data structure which is

very useful in implementing the round robin scheduling algorithm is the FIFO.

This particular FIFO shows the processes that need to be executed next into the CPU.

For example, in this particular case, P 2 is at the top at the FIFO, so it is a next process

which gets executed in the FIFO. So, P 2 gets executed over here. So, for example, we

will still consider the 4 processes as we have done before that is P 1 to P 4 and we will

assume that all of them arrive at the instant 0 and go into the FIFO of the ready queue

and they have burst times of 5, 4, 2 and 3 respectively.

Let us say for discussion that the scheduler starts off with this particular order P 1 P 2 P 3

and P 4, so and it first chooses to execute p 1. So, P 1 executes for 2 cycles and then

there is interrupt which occurs leading to a context switch and then the top of the FIFO in

this particular case P 2 gets scheduled into the CPU, while P 1 gets pushed into the FIFO.

So, P 2 then executes for 2 cycles until the next timer interrupts in which case the time

slice of 2 cycles completes and then it gets pushed into the FIFO. So, P 2 is at the bottom

of the FIFO, while P 3 which is at the top of the FIFO gets scheduled to run So, in this

way, every two cycles a new process may get scheduled into the CPU and execute.

So, if we compute the average waiting time. So, in this particular case, we will see that

the average waiting time and the average response time is different. So, what is the

average waiting time for P 1? So, P 1 executes 2 cycles here, 2 cycles here and completes

execution over here. So, it waits in the in the ready queue in the remaining of the cycles.

The number of cycles it waits is 1, 2, 3, 4, 5, 6, 7, 8, 9. So, P 1 waits for 9 cycles; now P

2 waits for 8 cycles – 1, 2, 3, 4, 5, 6, 7, 8,; P 3 for 4 cycles, and P 4 for 10 cycles. The

average waiting time is 7.75 cycles.

Now, to compute the average response times as we defined it before, the response time is

the time the process enters into the ready queue to the time it begins to execute in the

CPU that latency would be the response time. So, P 1 for instance has a response time of

0 because it enters into the ready queue or enters into the FIFO and gets executed

immediately. P 2 on the other hand enters in the 0th cycle, but gets to execute only after

2 cycles, so it has a response time of 2.

Similarly, P 3 enters at 0 and executes at only this point. So, at this instant therefore, it

has a response time of 4; and P 4 has a response time of 6 therefore, the average response

time is 3. Now the number of context switch is that occur are 7. So, in this case, 1, 2, 3,

4, 5, 6 and a context switch occurs over here because the process P 4 is existing out and

P 1 gets continues to execute. The numbers of context switches over here are 7 that are 1,

2, 3, 4, 5, 6 and the seventh context switch occurs over here then P 4 exits and P 1 gets

switched into the CPU.

(Refer Slide Time: 31:42)

Now let us take another mode complex example of round robin scheduling, where we

also have arrival times, which are not the same. So, P 1 is arriving at the 0th instant; P 2

at the second P 3 and P 4 at the third and ninth respectively. So, we can similarly draw

the Grantt chart and the states of the FIFO for this case. So, to start with in the 0 instant,

the only process which has arrived is P 1, and therefore, P 1 executes for 2 cycles. And at

this particular point, when the timer interrupt occurs, no other process is present as yet,

therefore P 1 will continue to execute for another 2 cycles for another time slice.

However, in this time slice, we have two processes which are entered into the ready

queue; these are the process P 2 and P 3. So, P 2 arrives at this interval while P 3 arrives

in this interval and they get added into the FIFO. So, at the second time slice completion,

there is a context switch, and P 2 gets scheduled into the CPU to execute, while P 1

which was executing will then go into the FIFO. So, P 2 executes for 2 cycles, then P 3

executes for 2 cycles, then P 1 executes for 2 cycles and at that time P 4 has arrived and

gets added into the FIFO.

Now, we have three processes P 1, P 2 and P 4 and these gets to schedule to run for a

period of time. The average waiting time in this case is 4.75, while the average response

time is 2. So, how is the average waiting time 4.75, it means that process P 1 has waited

for 7 cycles. So, before it completes, so that is 1, 2, 3, 4, 5, 6 and 7. While process P 2

has waited for 6 cycles, so it is 1, 2, 3, 4, 5, 6; process 3 has waited for 3 cycles, and

process 4 has waited for 3 cycles. The average response time can be verified to be equal

to 2, and the number of context switches was as before 7.

(Refer Slide Time: 34:15)

Now let us take the same example as we have done before, but with a time slice of one

that is we have reduced the time slice from 2 and we have made it 1. So, we see that in

every instant we have a timer interrupt and potentially context switch that can occur. If

we compute the average waiting time and average response time for this particular case

we see that the average response time in particular has reduced. Why has this occurred is

because once a process has entered into the queue it has to wait for lesser cycle before it

gets scheduled into the CPU.

On the other hand, the number of context switch has increased from 7 to 11, since we are

having timer interrupts which are more frequent therefore, there is more lightly that a

context switch will occur.

(Refer Slide Time: 35:10)

Now, if we take the same example, but with the time slice of 5 instead of 1, and if we

compute the average waiting time and average response time, we see that the response

time increases considerably 2.75 while the number of context switches reduces quite a

bit to 4. On the other hand, we see that the scheduling begins to behave more and more

like the first come first serve. The response time is bad because due to the large time

slice the scheduling behaves more and more like the first come first serve which we

know has a bad response time. So, from all this examples that we have seen so far we

seen we can conclude that the duration of a time slice is very critical. So, it effects both

the response time as well as the number of context switches.

(Refer Slide Time: 36:07)

So, essentially, if we have a time slice which is of a very short quantum, the advantage is

that processes need not wait too long in the ready queue before they get schedule into the

CPU. Essentially this means that the response time of the process would be very good or

it would have a less response time.

On the other hand, having a short time slice is bad, because we would have very frequent

context switches. And as we seen before context switches could have considerable over

heads. Therefore, it degrades the performance of the system. A long time slice or a long

quantum has a drawback that processes no longer appear to execute concurrently, it

appears more like a first come first serve type of scheduling algorithm and so this again

in turn may degrade system performance. So, typically in a modern day operating

systems the time slice duration is kept anything from 10 milliseconds to 100

milliseconds. So, xv6 programs, programs timer to interrupt every 10 milliseconds.

(Refer Slide Time: 37:17)

The advantage of the round robin scheduling algorithm is as follows. The algorithm is

fair because each process gets a fair chance to run on the CPU. The average wait time is

low especially when the burst times vary. And the response time is very good. On the

other hand, the drawbacks of the round robin scheduling algorithm are as follows; there

is an increase number of context switching that occurs and as we have seen before

context switching has considerable over heads. And the second drawback is that the

average wait time is high especially when the burst times have equal lengths.

(Refer Slide Time: 37:56)

The xv6 scheduling policy is a variant of the round robin scheduling policy; the source

code is shown over here. So, essentially what the xv6 scheduler does is that it passes

through the p table array. So, we have seen p table before which is an array of proc and

the scheduler passes through this particular array and finds the next process that is

runnable and invokes the switch. So, this is where you invoke the context switch. So,

every time the scheduler executes, the next process in this array that is runnable gets

scheduled to execute.

Next, we will see scheduling algorithms which are based on priority. So, these are the

priority based scheduling algorithms.

Thank you.

