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In this video, we look at an important type of interrupts known as Software Interrupts; 

and their applications for in system calls. 
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In the previous video, we had looked at hardware interrupts; we had seen how a device 

such as a keyboard or a network card could assert a particular signal in the CPU. And 

this would cause the CPU to asynchronously execute and interrupt handler corresponding 

to the device. So, as we have seen in the previous videos, this device would typically 

send a signal to the CPU through an intermediate device such as a PIC or a 

programmable interrupt controller.  

In much the similar way, we have what is known as software interrupt. However, unlike 

having an external device which causes the interrupt here an instruction in the program 

would trigger the interrupt. In this particular case, for example, an instruction such as 

INT would cause the interrupt to occur and the operating system to execute. So, here the 



instruction is INT x, so x here is the interrupt number, it typically has a value less than 

256, and it is used to specify or distinguish between software interrupts. 
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So, where is the software interrupt used? So, software interrupts are used to implement 

system calls. So, as we know user process could invoke a system call to perform some 

kernel operation, for example, it could be to read a file, or write a file, to print something 

to a monitor, or to send a packet through the network and so on. More specifically all 

operating systems implement system calls through one particular software interrupt.  

For example, in the Linux operating systems, the software interrupt 128 is use to specify 

system calls. Therefore, in a Linux OS, if I have INT 128 which is executed in the user 

process, it would lead to an interrupt that occurs and cause the kernel or the operating 

system to execute, and thereafter the OS would execute code depending on the interrupt. 

In xv6, the software interrupt used to implement system calls is 64 or instruction like 

INT 64 in the user process would be meant to implement a system call. 
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So, to take an example, let us consider that our application has a printf statement present 

in it. So, printf would print this string to the standard output, which typically is the 

monitor. Now printf is a function present in the library libc, and it would cause the libc 

function to be invoked. Now in the libc function there is a call to the write system call 

with the specifier STDOUT. So, the STDOUT here is the file descriptor; and it is a 

special file descriptor which is meant for the standard output or the monitor.  

In the write function, it would invoke INT 64 in xv6 or INT 128 in Linux and cause a 

software interrupt to occur. So, the software interrupt as we know would cause the 

transformation from the user space to the kernel space and would it would result in the 

operating system executing. The OS would then determine that the interrupt was in fact 

due to a system call and then it would determine what system call it was from; in this 

case, it was a from a write system call and it was a write to the STDOUT - the standard 

output. 

The operating system would then invoke the handler for the write system call, and this 

handler would take care of communicating with the various devices such as the video 

card to display the string onto the monitor. So, after this handler completes execution, the 

IRET instruction is executed which would result in a transformation back from kernel 

space to the user space and the program will continue to execute. 
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Now, typically operating systems support several different types of system calls. So, this 

particular table over here shows the various system calls supported by xv6. So, in a 

previous video we had seen some of them for example, we had seen, fork, exit, wait and 

so on. And you are also familiar with several types of system calls such as open, read, 

write, close, change directory, make directory and so on. So, each of these system calls 

would be executed by having a software interrupt such as INT 64, because it is the xv6, 

so it is 64. So, each time any of these system calls are invoked by a user process, it 

would trigger the operating system to execute. 

Now, the next obvious question that one would ask is from the OS prospective, how does 

the OS distinguish between the various system calls. So, we mention that all the system 

function calls were used either INT 64 for xv6, and INT 128 for Linux, so how does the 

o s determine whether the system call was with respect to fork, wait, sleep, exit, and so 

on. Essentially this distinguisher comes from the user process itself. 
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What happens is that before the INT 64 instruction, the user process will move a system 

call number to the eax register. So, for example, this instruction mov x comma eax will 

move the system call number to the eax register. Now each system call in the operating 

system will have a unique number system call number. Now the operating system when 

triggered by the INT instruction would look up the eax register, and then determine what 

system call was invoked. For example, in xv6, if we look up these particular header files, 

we would see the various system call numbers defined. For example, over here, we have 

each system call given a specific number example sys underscore fork given 1, sys 

underscore exit giving 2 and so on. 

Now when the OS gets trigger due to the INT 64 instruction getting executed, the OS 

will determine the system call using this system call numbers and then invoke the 

corresponding system call handler. So, each of the system calls also have a 

corresponding system call handler. This is shown over here, corresponding to each of the 

system call numbers sys underscore fork that is 1, sys underscore exit it is 2 and so on.  

So, these are system call functions present in the operating system which gets triggered 

based on the type of the system call. For example, if eax had a value of 11, the operating 

system will look in to the eax register and determine that this corresponded to the get 

PID system call being invoked. And then it would look into this particular table and see 



that the get PID system call is handled by this system sys underscore get PID, and 

therefore it will then invoke this sys underscore get PID function. 
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Now, let us look at the typical prototype of a system call. So, a topical system call is as 

shown over here. So, of course, it has a system call name that is a function name, and 

then it is passed some resource descriptor and parameters and typically would return an 

integer. So, the resource descriptor specifies what operating system resource is the target 

here, for example, it could be a file or a device; and as we have seen in the previous 

slides it could also specify a particular monitor, for example, if the resource descriptor is 

STDOUT then the resource in use here is the monitor.  

So, some system calls also do not specify this resource descriptor; in such a case, the 

system call is meant for that resource itself, for example, if we use the sleep system call, 

we only specify the time and no specific descriptor such as the file, device and so on. 

This means that the current process wants to sleep for that given interval time. 

The next part is the parameters. So, these parameters are specific for the system call, for 

example, if we invoke read, write, open or close or any other system call, the parameters 

specified here is going to be very specific for each of these system calls. For example, 

the write system call has the parameter buf that is a void pointer and the count. So, the 

open or the close or any other system call would have different set of parameters. So, 

essentially these parameters are very specific to the type of the system call. 



The return type is typically int or integer, and sometimes it is a void. So, int is typically 

used, because in this way the operating system will be able to send the completion status 

of the system call, whether it had executed successfully or it had failed and so on. So, 

sometimes the return is also used to specify certain specific information about the system 

call for example, in write the return is size underscore t which in fact, is typdef to integer 

and it specifies number of bytes that have been written to the file specified int fd. So, the 

return type could also vary depending on the type of system call. 

The next thing what we will look at is how these parameters that is the resource 

descriptor and the parameters pass to the system call are sent to the kernel. So, note that 

system calls are invoked very differently from a standard function call. So, in a function 

call, as we know the instruction call would be used and the call would specify a address 

which is where the function would reside. And the various parameters for the call are 

passed through the local stack.  

Similarly, the int return which is written from the function call would be return through 

the eax register. So, system calls on the other hand work very differently from function 

calls. So, as we have seen system calls invokes the kernel by the INT 64 instruction as in 

the case of xv6. So, how are the parameters such as the resource descriptor and the other 

parameters passed to the kernel? 
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Essentially, there are three ways of doing so. The first is by pass by registers which is 

typically done in Linux; the second way is by passing through the user mode stack which 

is done in xv6; and the third way is by passing through a designated memory region. So, 

in this particular case, what is done is that in the user process itself, a designated region 

most likely in the heap would be used to save the various parameters that are needed to 

be passed to the system call; and the address to this region in the heap is passed through 

the registers. So, we will look at the other two cases that is pass by registers and pass via 

user mode stack in more detail. 
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Now pass by registers which is used by Linux system calls would use the register present 

in the processor to pass parameters to the kernel. So, we know we have already seen an 

example of this of how the eax register is used to pass the system call number from the 

user process to the operating system. In a similar way, other register such as the ebx, ecx, 

esi, edi, and edp are used to pass the various parameters of the system call from the user 

process to the kernel. If the system call has more than 6 arguments, and then a pointer to 

a block structure containing the argument list is passed to the kernel. 
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Now, let us look at the second case that is pass via the user mode stack, and this is what 

is done xv6. So, in this particular way, before the INT 64 instruction is present various 

parameters in the system call are pushed onto the stack. For example, if the system call 

had 3 parameters param 1, param 2, and param 3, so these three parameters are pushed 

into the user space stack and then the system call number as we have seen is moved in to 

the eax register. So, this here is the user space stack in of the user process containing the 

three parameters. 

Now, when the INT instruction is executed, as we know, it triggers an interrupt causing 

the switch from the user space in to the kernel space. Also as a result of this interrupt 

execution, as we have seen, there is the switch in the stack from the user space stack to 

the kernel space stack. And what we have seen in the previous video that this kernel 

stack is used to create what is known as the trapframe. So, this trapframe is shown over 

here. So, what we have seen in the previous video that some of these entries in the 

trapframe are pushed into the stack automatically by the CPU. So, in particular, these 

registers specified in capitals are all pushed onto the kernel stack that is on to the 

trapframe by the CPU. 

Now, the SS and ESP here is important for us. So, these are the stack segment and the 

stack pointer, and these registers correspond to the user space stack. So, as we know 

before the INT 64 has been executed, the last known stack pointer was pointing to this 



particular location. And therefore, the contents of ESP will also point to this location in 

the user space stack. So, in this way, the kernel will then use the SS and the ESP from 

the trapframe to determine the various parameters for the system call. 
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The next thing we will look at is how the return value is passed from the system call 

back to the user process. Again we will recollect that the entire reason for creating this 

trapframe in the kernel stack for the process is due to the reason that when the interrupt 

or the system call completes its execution. The entire state in the trapframe is restored 

back into the corresponding CPU registers, and it could result in the user process 

continuing to execute from where it had stopped, and also the context of the user process 

is restored with the help of the trapframe. 

Now, in order to return a value from the system call this is executing in the kernel space 

back to the user space. So, what is done is that the eax register in the trapframe is 

modified; essentially, we had seen that the eax register because of this particular 

instruction would contain the system call number.  

Now this system call number is overridden by the return value of the system call. So, this 

could be a negative number like minus 1 or a positive number as we have seen in the 

earlier slide. So, now when the system call executes and completes its execution and the 

context is transferred back to the user process, the entire trapframe including the new 

value of eax in the trapframe is restored back in to the registers of the CPU. The process 



continues to execute from this particular instruction with the new value of eax, which 

contains the return from the system call. 

Thank you. 


