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In a previous video, we had seen about several important system calls related to process 

management. So, we had seen these system calls such as the fork, exec, wait and exit. In 

this video, we will look at how these system calls are implemented within the operating 

system. 

(Refer Slide Time: 00:38) 

 

In particular, we will see about how the system calls are implemented in the OS xv6. So, 

we will be referring the xv6 source code, which can be downloaded in the form of a 

booklet from this particular website. Please download the revision number 8, so that it 

matches with the particular video. 
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Let us start with the fork system call. In the previous video, we had seen that when the 

fork system call gets invoked it creates a child process. The return value of fork that is 

pid over here will have a value of 0 in the child process; as a result, these green lines are 

what is executed exclusively by the child process. While in the parent process, the value 

returned by fork will be greater than 0 essentially the value returned by fork will be the 

child processes pid value, thus these purple lines are what is going to be executed by the 

parent process. 
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Inside the operating system, the fork essentially creates a new process control block and 

fills it. Recollect that in xv6 the process control block or PCB is defined by a struct proc 

as shown over here. So, essentially what fork does is that it is going to fill up the various 

elements of the struct proc corresponding to the new child process created. Recollect also 

that there is a ptable that is defined in the xv6 operating system. The ptable essentially 

contains an array of procs the size of the array is n proc which is the total number of 

processes get that can run at a single time in the xv6 OS. So, every process is allocated 

one entry in this particular ptable. 
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The implementations of fork in xv6 are shown over here. So, this can be seen in the 

source code listing in line number 2554. The first thing you would notice over here is 

that we are declaring a pointer called np which is defined as a struct proc pointer. So, this 

is our pointer corresponding to the new process that is been created or rather the new 

child process.  

Now the first step that fork does is to invoke allocproc. So, what allocproc does that is 

what this function does is that it is going to parse through the p table and find a proc 

structure which is unused; once this proc structure is found, then it is going to set the 

state as EMBRYO. So, recollect that in xv6 EMBRYO means a new process which is not 

yet ready to be executed, also which is set is the pid for the new child process. Other 

things which are done in allocproc is the allocation of a kernel stack and filling the 



kernel stack of the new child process with a things like the trapframe pointer the trapret 

as well as the context. 
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The next step in the fork implementation is this call to this function called copy u v m. 

So, essentially what the copy u v m function does is that it copies the page directory from 

the parent process to the child process. This copy u v m takes two parameters; it take the 

parent page directory which is represented by proc point pgdir; and the parent size that is 

represented by s z, and what is returned by this function is a pointer to the new processes 

page directory.  

Now we will see this particular function in detail in a later slide, but for now notice that 

if this function fails then everything is reverted. First, the kernel stack which has been 

allocated previously in allocproc gets freed, and the value of n p k stack is set to 0 and 

the state is set back set to unused again. Remember that allocproc had set the state to 

EMBRYO, now over here the state is set to unused, and then fork is going to return with 

minus 1. So, this minus 1 is sent back to the user process that is the process which had 

invoked forked. 
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The next step in the fork implementation is to copy some of the parameters of the parent 

onto the child; of these steps the most important one is the third one where in the entire 

trapframe of the parent process is copied on to the trapframe of the child process. Now 

recollect that the trapframe is used or rather recollect that a trapframe is created 

whenever a hardware interrupt occurs or a system call gets invoked. 
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If we go back over here when the fork system call gets invoked, it triggers the operating 

system to execute as well as its going to create a trapframe for this process in the kernel 



stack. Now the trapframe is used, so that when the fork system call completes executing 

in the operating system it will return back to this point.  

Now by copying the entire trapframe of the parent process to the child process, it will 

allow that the child process also continues to execute from this point; thus when fork 

returns in the child process, the child process will execute from this point. Also, recollect 

that the difference between the return types of the parent process as well as the child 

process is that the pid value in the child process is 0; while in the parent process, it has a 

value that is greater than 0. So, we will next see how this is achieved. 
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Essentially in the folk implementation, we see that in the trapframe of the new process 

the value of eax is set to 0. So, this will ensure that in the child process, the return value 

of folk is set to 0. We will see later how the return value in the parent process is set to the 

child’s pid. 
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In this part of the folk implementation, other things are copied from the parent process 

onto the child process; other things include the executable name, cwd that is the current 

working directory and copy of file pointers from the parent. 

(Refer Slide Time: 07:33) 

 

Now that the proc structure for the child process is completely filled, the state is 

switched from EMBRYO to runnable. So, setting the state to runnable would imply that 

a scheduler could actually select this child process and allocate it with the CPU. Thus the 

child process would be able to run and execute code on the CPU. 
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The return from the fork implementation is pid, the value of pid is set over here. So, 

essentially the pid is np pid that this is the child processes pid value. And this pid value 

goes as the return to the fork in the parent process. Thus, in the parent process in the user 

space, fork would return with the pid value of the child process, while as we have seen in 

this line over here in the child process, fork would return with the value of 0. 
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When it comes to the CPU registers, all register values in the child process is exactly 

identical to that of the parent process except for two registers. As we have seen before, 



one is the eax register. So, in the child process, the eax register is set to 0, so that when 

folk returns, it returns with the value of zero in the child process. And other thing which 

is changed in the child process is the eip or the instruction pointer. The instruction 

pointer is set to forkret which is a function which is exclusively executed by the child 

process and not by the parent. So, forkret is a function in the xv6 code as you can see. 
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Now, we will recall the exit system call internals. So, when a exit system call gets 

executed, these are the six things which occur inside the operating system. Essentially, 

there would be a decrement in the usage count of all the open files. Further, if the usage 

count goes to 0 then the file is closed. Second, there is a drop in reference for all in 

memory i nodes.  

Third, there is a wake up signal sent to the parent process; essentially, if the parent state 

is sleeping then the parent is made runnable. Why is this needed, essentially this is 

needed because a parent may be sleeping due to a wait system call and therefore, making 

it runnable would ensure that the wait system call becomes unblocked. The fourth point 

is that the exiting process will make init recollect that init is the first process ever created 

by the OS, so the init process is made to adopt all the children of the exiting process, and 

the exiting process is going to be set to a state called a ZOMBIE state.  



This setting of state to ZOMBIE is used, so that the parent process would then determine 

that one of its child processes is exiting. So, we will see more on this in the wait system 

call. And lastly it is going to force a context switch in the scheduler. 
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We will next see the wait system call. Recollect that when the wait system call is invoked 

in the parent, it is going to be blocked until one of its child process exits. So, if no child 

exits then it will continue to be blocked. On the other hand, if the parent process has no 

child at all, then it will return with minus 1. Now we will see the internals of the wait 

system call. 
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 This is the implementation of the wait system call in the xv6 operating system. So, this 

listing is obtained from the proc dot c file of the xv6 source code. Essentially, you would 

see that it has an infinite loop by this that is for semicolon semicolon which starts over 

here, and ends at this point. So, within this particular infinite loop, there is an inner for 

loop which is from here to here. So, essentially this inner for loop passes through the p 

table. So, recollect that the p table is an array of procs; and each and every process which 

is in some state in the xv6 OS has an entry in the p table. So, by passing through all 

elements of the p table, this particular loop will be able to check every process that is 

present in the xv6 OS in this particular instant. 

The first check that it does is to find out whether the current proc is the parent of this 

particular entry in the p table, which is p. So, it is going to find out if the current proc 

which has invoked the wait is the parent of p. If it is not the parent then it just continues; 

otherwise it comes over here. So, at this particular point, in the implementation, we 

ensure that the p is a child of the process which has invoked the fork.  

The next check is to determine the state of p. So, if the state happens to be ZOMBIE, it 

indicates that the child process has exited, and therefore, it will enter this particular if 

condition and it will do various freeing such as it is going to free the kernel stack set the 

state to unused set pid to 0 and so on. The return is that this point, so this would result in 



the break of the infinite loop and it will result in the wait to exit; and the return would be 

the pid; essentially pid is the child processes pid value. 
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So, you may have noticed two things; first the kernel stack of the exiting child is cleared 

or rather is freed at this particular; second the page directory corresponding to the exiting 

child is freed at this particular statement. So, freeing these child processes stack as well 

as page directory would allow the parent process to peak into the exited child’s process. 

So, this enables better debugging facilities of the child process.  

For instance, if the child happens to have crashed then the parent process could look up 

the stack as well as the page directory, and therefore into the physical pages of the child 

process and we will be able to get information about why the child process has crashed. 
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Next during the entire for loop if we have found no children for the particular process 

then we just return minus 1. So, wait will again return to the user process, but with a 

value of minus 1. 
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So, execution comes to this particular line that is the sleep when we have a child process 

which is not in a ZOMBIE state. So, in such a case this wait statement is going to sleep 

until it is woken up by exiting child. 



(Refer Slide Time: 15:28) 

 

We will now look at the internals of the exec system call. Recollect that the exec system 

call would load a program into memory and then execute it. In this particular code 

distinct, the parent process would invoke the fork system call which would result in a 

child process being created. The child process in this particular example would execute 

the exec system call; and as a result, it would cause a new program to be executed in the 

system. In this particular example, the new program is the 'ls' program, which lists all the 

files in the current directory.  

Now, 'ls' is an executable. It has a current particular format known as the ELF format or 

executable linker format. So, this particular format is what is interpreted internally by the 

exec system call within the operating system and this format is essentially understood 

and used to load l s from the hard disk into the RAM. 
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Let us see what actually is present in the ELF format. So, every time we actually compile 

or link a program, it creates an ELF executable or an ELF object. For instance, with the 

example that we took that is - slash bin slash ls, this is an ELF executable. So, it has a 

format has shown over here, so at least this is part of the format, and more details about 

the format can be obtained from these particular references. What we will do now is we 

will go through some important components of this ELF executable, and see how this is 

going to be useful for us that are from an OS perspective. 
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So, we will start with the ELF header. The ELF header contains various parameters and 

these are just a few of the parameters, which are present. The ELF header starts with an 

identifier. So, this identifier essentially is a magic number which is used to identify 

whether this file is indeed an ELF file. Second, there is the type so a type would tell that 

the type of this ELF file, so if the type would have a value of executable or relocatable 

object or shared object or core file and so on.  

Another important entry is the machine details, so it would tell information about 

whether this ELF executable or the ELF object could run on a certain machine. For 

instance, ELF this machine details could have values such as i386, x86 64, ARM, MIPS 

and so on. Then we have an entry value in the ELF header, this entry value will tell the 

virtual address at which the program should begin to execute. So, besides this we have a 

pointer to the program header number of program headers which are present pointer to 

section headers and the number of section headers which are present. So, we will see 

more about this in the later slides. 
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Let us first start with an example. Let us take this particular example of our hello world 

program written in C, and we compile it with the minus C option. So, when you say g c c 

hello dot c minus c, it creates the object file hello dot o. So, this is an ELF object with 

then uses a utility readelf with an option minus h with the object file hello dot o. The 

minus h option would print the ELF header. So, this is the ELF header, so it has a magic 



number which essentially is the identifier and it is used to distinguish this particular 

object file from any other file. So, it is used to say that this particular object file is indeed 

an ELF file. 

Then another thing which we have seen is the type of the ELF header which it could be 

for instance a relocatable object and so on. So, this in this particular example, since we 

used a dot using a hello dot o that is object file it is a relocatable object file and you can 

actually see it over here rel which is a relocatable object file.  

And another thing is the machine details, which over here which specified as machine in 

this case it is the AMD x86 64. So, which indicates that this object file is for x86 64, bit 

machines then we have seen the entry point in this case is 0. So, other things we have 

seen is the start of the program headers which is 0 bytes into the file, this one pointer to 

program headers. And we have seen the number of program headers in this particular 

object file is 0. In the other two aspects are the pointer to the section headers and the 

number of section headers. The pointer to section headers is the start of section headers, 

it is 368, and the number of section headers is 13. So, in this way, we can actually see the 

various contents of the ELF header. 
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Now, we will look more into detail about the section headers, so in order to get a listing 

of the section headers you could use read ELF minus s hello dot o, which will print all 

the section headers present in the relocatable object hello dot o. So, this is actually shown 



over here. So, we will not go into too much details of this because not much is applicable 

for us, but just give an explanation about the various columns. So, this particular column 

that is the second column over here is the name of the sections, while the third column 

gives you the type of the sections.  

The type could be one of these, these are the progbits which is information defined by 

the program, symtab which is a symbol table, null or nobits essentially is the section 

which occupies no bits, and rel a which is a relocatable table. Then we have here the 

address, which is a virtual address for where the section should be loaded; in this 

particular case, it is all 0s because it is a dot o file it is an object file and it could be 

relocated. Then here you have the offset and the size of the sections, while here you have 

a table size if there is a table then you have a non-zero value; however, if no table is 

present then you have a 0 value. 

(Refer Slide Time: 22:11) 

 

Next, we will look at the program header contents So, program header also has several 

parameters such as the type of the program header, the offset, the virtual address 

essentially the virtual address where the segment needs to be loaded, and you have a p 

address offset which is essentially ignored. 
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So, in order to get the program headers for our hello world program, so we use readelf 

minus l hello. Note that, we are giving the executable over here and not the object. These 

are the parameters which are printed related to the program headers. So, essentially we 

have the type of the header, the offset, the virtual address, where it needs to be loaded 

physical address the memory size and the flags. 
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Now that we have some idea about ELF executable files and exec elf objects essentially 

how they are stored and the various components in the ELF images, we are equipped to 



see how exec system call is implemented in the xv6 OS. So, this is actually listed over 

here. And you could also look it up in the xv6 source code in this particular file that exec 

dot c. So, also shown in the slide is the virtual memory map. So, recollect that the exec 

system call gets invoked by the child process.  

First, there is a parent process which forks; and in the child process, the exec system call 

that gets invoked. So, when the child process is created by forking, there is a virtual 

memory map which is created for that child process. And we as we have seen the top half 

or the top area regions of this virtual memory map comprises of the kernel code, while 

the lowest half comprises of the user code and data. Also we have seen that, during the 

process of forking there is the kernel stack which gets created. So, this kernel stack is 

specific for this child process. 

Now, we will see how as exec function executes this virtual memory map changes. So, to 

start with let us look at the exec parameters, which are taken. So, in this case, there are 

two parameters which are taken that is the path and the argv, so path specifies the path to 

the executable. So, in our example we have used slash bin slash l s So, this would be 

specified in the path while argv is the parameter which you are passing to the particular 

program. So, for instance l s if you are taking could have arguments such as l s minus l or 

l s minus t and so on and so forth. The minus l and minus t are arguments which are 

passed over here. 
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The first thing that is done is that we get a pointer to the inode of the executable. Now 

inode is a metadata which has information about where the particular executable is stored 

on the secondary storage device such as the hard disk. So, for instance, in our particular 

case, where we are using slash bin slash l s, so this particular function name I would 

return the inode for the l s executable.  

Next, what we are doing is we are using this constant called read i, which reads from that 

inode that is from the secondary storage device the ELF header. So, we are reading the 

ELF header from this particular inode. So, ELF header or just mention as ELF over here 

is defined over here as ELF header. So, we are then looking up into this ELF header and 

checking the identifier, we are checking the magic number and we are verifying whether 

this magic number is indeed correct. 
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So, this essentially is a sanity check and this magic number for ELF should have this 

particular value that is it should have 7 f ELF. So, this is this is the 7 f is the hexadecimal 

value, while ELF is the alphabets. 



(Refer Slide Time: 26:46) 

 

The next step is a call to the setupkvm, where we setup kernel side page tables again So, 

this essentially may not be required, but it is done in xv6, though it is not a necessity 

since we have already done it during the fork process. 
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This particular slide shows a continuation of the exec implementation. The next thing is 

we continue to read from the inode, we read various things like the program headers, and 

we begin to load code and data from the ELF image which is present on the hard disk 



into RAM, and consequently we are actually filling up the virtual address space 

corresponding to the code and data. So, this is done over here.  

I will not go more into details about this about how the various functions are used. But 

the basic idea is that we are going to the hard disk looking into the inode corresponding 

to that particular executable and loading the code and the read only data into the physical 

memory map and we are also creating page table, and page directory entries 

corresponding to that code and data. So, this is actually present code, so therefore, you 

get this mapping present over here. 
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The next step in the exec implementation is to create the stack for the user process. So, 

this stack as opposed to the kernel stack is used by the code for storing of local variables 

as well as for function calls. So, in order to create this stack, we rather the exec 

implementation allocates two contiguous pages So, it one is used for the stack while the 

other one is used as a guard page The guard page is made inaccessible; essentially this is 

used to protect against stack overflows. So, what does it means is that as we keep using 

the stack the stack size keeps increasing, and it would eventually hit the guard page; and 

as a result, we would know that the stack overflow has occurred. 
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The next step in the exec implementation is to fill the user stack. So, essentially we have 

created the stack over here. And now we are actually filling the stack So, we fill the stack 

with command line arguments. So, we know that every program that we write could take 

command line arguments and these arguments are actually filled into the stack.  

So, we have like command line argument 0 to N followed by a null termination string 

and then we have pointers to these arguments like pointed to argument 0 pointed to 

argument 1 and so on, so these pointed to arguments forms the argv of your program. So, 

you know that a main function takes argc and argv, so these pointers from the arg v of 

your programs input and after these argv is the argc, which is the number of such 

parameters and followed by this there is a dummy return location for main. 

Now, we have seen that we have actually created the code for the user process we have 

the data for the user process and these two have actually been taken from the secondary 

storage device, and loaded into physical RAM. And also a page directory and page table 

entries have been created thus we are able to see it in the virtual main memory map. And 

also we have created a stack for this user process and we have filled the stack with 

command line arguments right creating the argc and argv. The only thing next to do is to 

actually start executing the process. 
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This is done by filling the trapframe for this current process with ELF entry. So, 

essentially the t f eip that is the instruction pointer in the trapframe is stored with ELF 

dot entry, which essentially is a pointer to the main of the user program or main function 

of the user program. Similarly, the stack pointer is set to sp, so we are creating the 

trapframe esp is set to sp. Now when this particular exec system call returns to the user 

process the trapframe gets restored into the registers as a result the eip gets the value of 

the main address while the stack pointer the esp gets the value of the user space stack and 

therefore, execution will start from the main program. The stack pointer will have the 

pointer to the various arguments for argc and argv, which will then be used in the main 

program. 

With this, we come to the end of this video lecture. We had seen a quite in detail about 

how xv6 operating system implements various system calls related to the process 

management such as the fork, wait, exec and the exit system call. So, in particular with 

the exec system call, we had seen how the various user space sections such as the code 

data and the stack gets created, and how the stack gets filled with command line 

arguments, and how execution of the user space process gets initiated. 

Thank you. 


