
Introduction to Operating Systems 
Prof. Chester Rebeiro 

Department of Computer Science and Engineering 
Indian Institute of Technology, Madras 

 
Week - 02 

Lecture - 10 
PC Booting 

 

Hello. In this video, we will look how a PC Boots, right up from you turn it on to the 

time the operating system executes. Now this particular video is especially applicable for 

Intel and AMD based platforms. So, one big thing which we should remember when we 

are talking about the Intel platforms that we typically use in desktops or laptops is the 

concept of backward compatibility.  

As we have seen in a previous lecture. Intel maintained backward compatibility. So, it 

ensures even today that any code which was developed and an Intel processor 20 or 30 

years back which still execute on the and Intel processor are used today. Because of 

backward compatibility, lot of things that we actually do while loading an operating 

system would reflect on what was done 30 years back. Essentially, the things what 

happened in and system in around 95 or 97. That is when the 386 based processors where 

used, are still done today on the latest i7 processor from Intel. So, we will look at how 

PC Boots. 



(Refer Slide Time: 01:50) 

 

Now, we all know that in order to start a computer, we need to press the reset button or 

the start button present in the desktop. So, what actually happens internally is that when 

you press this button, it is going to send a signal to the CPU the signal for instance would 

be a pulse, these an electrical pulse which gets created when you press the start button or 

the reset button, and this pulse it sent to a specific pin on the CPU known as the reset pin 

and when the CPU obtains or gets this particular signal about the reset, it is going to start 

booting. Let us see what are the various steps involved when the CPU starts to boot. 



(Refer Slide Time: 02:46) 

 

So, we are seen the power on reset. Now when the power on reset comes and the CPU 

detects it, what happens is that every CPU register which is present inside the CPU, is 

initialize to 0 except for 2 registers. These registers are the code segment and the IP. Now 

when the reset occurs the code segment is set to the value of 0xf000 and the instruction 

pointer is set to 0xfff0. So, if you recollect how an 8088 or an 8086 processor computes 

its address, is going to take the code segment register in this case f followed by three 

zeros shifted by 4 bites and add the instruction pointer.  

As a result the physical address or the address for the first instruction to be executed will 

be present in ffff0. Now if you look up the RAM module, and which we had covered in 

the previous videos what we would see is that the memory address corresponding to ffff0 

would be pertaining to the BIOS area. In fact, this particular memory location is just 16 

bites below the 1 MB mark. So, this particular thing 0x12345 that is 1 MB is this 

particular point of this particular address and the first physical address that is put on the 

address bus by the CPU is ffff0 which is 16 bites below this particular 1 MB mark. So, as 

a result if you want to boot your system, it should be ensuring that at this particular 

memory location we have a valid instruction which is present. So, this point over here is 

the first instruction that is present. 



Now, another thing what happens is that soon as the power is reset the processor in is set 

to what is known as the real mode. So, in the real mode, the processor is in a backward 

compatibility mode with the 8088 or the 8086. So, recollect that the 8088 or 8086 

processor could address at most 1 MB. So, it could address at most this part over here till 

this thing and this is shown as the green region in this RAM there were other features of 

the real mode, they where no protection, no privilege levels, direct access to all memory 

and no multi tasking. So, the first thing that the instructions over here in this particular 

location ffff0 should do is, to jump to another location. So, essentially what would 

happen is that it would jump to a location in the BIOS. This jump would trigger the 

BIOS to start to execute. 

(Refer Slide Time: 06:23) 

 

Next, we have that the BIOS ROM over here would begin to execute. So, as we know 

the BIOS is the basic input output system. It is a read only memory often these days it is 

in the form of a Flash or is E square PROM and you would actually notice a particular 

chip like this which is present on your system. So, some CPU’s also display that 

particular BIOS name while booting up for example; this particular chip is the AME 

BIOS, and it may get displayed by the system boots up.  



The BIOS present in this particular area of the RAM will begin to execute code in real 

mode. So, the BIOS do the following essentially first does a power on self test where it 

checks the system for correctness. It ensures that all parts of the system are working 

properly. Next it initializes the video card and all other devices which are connected to 

the system then, optionally it may display a BIOS screen on the monitor. Note that we 

have initialized the video card, and therefor the monitor is activated and it is capable of 

displaying things. So, the BIOS screen will now be able to display on the screen. 

Then it performs what is known as a memory test and sometimes some of the BIOSs also 

determine what memory is used and also the amount of memory that is present in the 

system. After the memory test some parameters are set. For example, these correspond to 

DRAM parameters and in the BIOS will ensure that various requirements of the DRAM 

such as the frequency at which the DRAM capacitors are refreshed, are set adequately.  

Then plug and play devices are configured, in the sense that all devices which are plug 

and play are going to be quarried and the BIOS will then determine how much memory 

is required for each of these devices, and these devices are then allocated memory in the 

system. After that the BIOS with assign resources to DMA channels and the various 

IRQ’s that is the interrupt request from our prospective what is important is the next step 

where the BIOS identifies the boot device, that is the device which most likely would 

hold the operating system. It would read the sector zero from that boot device into the 

memory locations 7c00.  

Note that, 7c00 is a memory location in the low memory region of the RAM. So, what it 

would do is, it would copy the sector 0 which is typically of 512 bites from the boot 

device which is typically the hard disk into the memory location 7c00. So, at the location 

7c00 we would have 512 bites of code, which would help in booting the operating 

system. The BIOS then causes a jump to 0x7c00 what it means, is that the code present 

in location 7c00 which is presented in the low memory of the RAM will began to 

execute. 



(Refer Slide Time: 10:21) 

 

Now, this memory the memory present in 7c00 and a copied from sector 0 of the hard 

disk into the RAM, is known as the MBR or Master Boot Record. So, this particular code 

is of 512 bites out of which 446 bites are instructions and contain bootable code, about 

how to boot the system there are 64 bites with which have information about the various 

partitions that are present on the disk. Essentially the 64 bites are divided into 16 bites 

per partition and then there are 2 bites of a signature which is used to identify whether 

this is in fact, an MBR code.  

So, this code begins to execute from the location 7c00 present in the RAM. What it 

typically does is that it is going to look into the partition table which is present, and it is 

going to try to boot the operating system. So, essentially in order to do this, it first loads 

what is known as the boot loader of the operating system. So, each operating system 

would have its own boot loader for instances LINUX would have its own boot loader or 

windows would have its own boot loader and so on. Optionally it may directly load the 

operating system by itself. So, we will see what happens in the boot loader load. 



(Refer Slide Time: 12:04) 

 

So, after the MBR executes the boot loader would execute. So, the main job of the boot 

loader is that it loads the operating system. So, it optionally like some operating systems 

that we see today, it may give an option to the user to select what operating system to 

load. The other jobs that are done by the boot loader is to disable interrupts, set up the 

GDT switch from real mode to protected mode and read the operating system from the 

disk into the RAM. So, these are things which are done by the XV6 operating system. 

So, there may be slight variations when we go from one boot loader, form one operating 

system to another operating system. 

Sometimes what may happen is that we do not have this MBR code present at all, in such 

a case the BIOS or rather in such a case the boot loader itself is present in the sector zero 

of the hard disk, and the BIOS will load the boot loader into the location 7c00 and junk 

to the boot loader. Essentially what is happening is we are skipping this particular MBR 

execution. So, once the boot loader executes and sets up the processor and the GDT and 

switching from real mode to protected mode, it would load the operating system from the 

disk.  



Now the protected mode is a 32 bit mode, essentially where we extent the memory 

region that can be accessed from 1 MB to the entire region of 4 Giga Bytes. So, we will 

not go into more details about how this particular protected mode is activated so on. 

(Refer Slide Time: 14:13) 

 

So, once the boot loader loads the operating system, it then transfers control into the 

operating system. The operating system does several things, like it sets up virtual 

memory. So, this includes setting up page directories and page tables so on. It initializes 

interrupt vectors and the IDT interrupt descriptor tables, and the other aspects pertaining 

to interrupts, then it initializes various devices present in the system like timers monitors 

hard disks consoles file systems so on.  

Then it may also initialize other processes if they are present, and finally it would startup 

the first user process. So, in a feature video, we will see what the first user process is. 

This particular user process is the first process that executes in user space. So, you may 

recollect that all of this executes in the operating system and essentially this executes in 

the Kernel Space and it is only at this particular point during the boot up sequence, will 

the user process start to execute. 



So, after this, what is expected is that these first user processes will spon various jobs or 

user process jobs various DRAMs and so on; and one of its jobs is to create a shell. So, 

this shell would be then new used by the user, to run various programs and commands 

and so on. 

(Refer Slide Time: 16:05) 

 

So, we will now look at systems which have a multiprocessor present in them. So, as we 

have seen in a previous video in the Intel type of architecture which has a multiprocessor 

present. So, the all processors share a front side bus, and on the front side bus there is a 

chip set or the north bridge which interfaces with the memory bus. So, essentially in this 

Intel type of architecture we have memory symmetry. So, what this means is that, all 

processors in the system share the same memory space, essentially in order to access a 

particular DRAM location.  

All processors would need to send the same address to the DRAM, and the advantage of 

having such a symmetric view of the memory is that we can have a common operating 

system code which could execute in any of these processors. Similarly, there is what is 

known as the IO symmetry. Essentially what this means is that all processors share the 

same IO subsystem essentially all processors can receive interrupts from any IO device. 



(Refer Slide Time: 17:30) 

 

Now, in order to boot multiprocessor system, what is generally done is that one processor 

is designated as the boot processor or the BSP. So, this designation is done either by 

setting a particular signal in the hardware or by the BIOS itself, and all other processors 

are designated as application processors. So, when the system is powered on, it is the 

only the boot processor which begins to execute. So, the BIOS will execute in the boot 

processor and that is the BSP, and the BSP then learns about the system configuration.  

It determines how many other APs are there that is how many other application 

processors are present in the system. Then it triggers the booting of the application 

processor. So, after it does all the required initialization it would trigger the boot of the 

application processors. So, this triggering of the boot is done by something known as the 

startup IPI or the startup inter processor interrupt.  

This is a signal from the BSP that is the boot processor to the application processor. So, 

when the application processors see this signal they will begin to boot and of course, 

they identify that they are not the main BSP, but rather the application processor. So, they 

skip various aspects such as initializing the various devices present in the system and so 

on. In this video we had seen how the CPU boots right from the time the power on reset 



is provided to the processor to the point when the operating system begins to execute and 

spons the first user process.  

In the later part of this course we would see various aspects about how the operating 

system manages memory and manages different processes which are running in the 

system. 

Thank you. 


