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Eigenvalues & Eigenvectors

@ Given a square matrix & £ "7 4 s said to be an sigenvalus of A
and vector ¥ the corresponding sigenvector if

AT = A¥
@ Geometrical interpretation

We can think of the eigenvectars of a matriz A as those vectors whick
upon heing operated by A are anly scaled hut nat eotated

@ Example

January ¥ 14, JMa

The eigenvector and eigenvalue of A spectral wave. So note here then eigenvectors and
eigenvalues are tied together which means that any eigenvector has an associated eigenvalue.
You often characterize square meters as head down of their eigenvector one way of looking at

eigenvector is as follows.

X can be count out for the vector in R for n and the square meter is A acts like an operator which
transforms X into another N dimensional vector AX. Now the eigenvectors of A are those
vectors which are being transformed by A or operated upon by A are only scaled by A but not

rotated. In other words that direction does not change.



We can have a look at this example here, the 2x2 matrix A on multiplying the vector X/1 clicks
back the vector X multiplied by the real value 7. So here X is an eigenvector of A and 7 is an

eigenvalue of A.
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Characteristic Equation

@ Trivially, the 0 vector vould always be an eigenvector of any matrix
Hence, we only refer anly to non-zero vectors as sigenvectors

@ Given a matrix A, how do we find all eigenvalue-cigenvector pairs?

Ax Ax
AY - AX =0
(A= AMx =0

The above will hald #f

[A=AM)| =0
This equation is also referred o as the characteristic equation of 4
Salving the equation gives us all the eigenvalues A of A Nete that

z,) these eigenvalues can be complex
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We can see that 0 would always be an eigenvector of any matrix it reasonably go by the AX= X
definition. Hence we only refer to nonzero vectors and eigenvectors. So the question is given a
matrix A out as 1 mild all the eigenvalue, eigenvector bits, by simplifying a sequence Ax we get
A- i to X=0.

Now since we are only looking at nonzero vectors det of x cannot be zero and x can be a zero
vector which means that det of A- Ai should be zero. So the equation det A- Xi=0 is called a
characteristic equation of A. So one designation gives this all the eigenvalues of A, one thing you
should notice that even though all the value of A are real, A is a real matrix, the eigenvalues can

complex.
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Properties

@ The trace tr(A] of a matrix A also equals the sum of its
triA) = NN
)
=1
@ The determinant |A is equal to the product of the eigenvalues

£

Al = H

© The rank of a matrix is equal to the number of non zero cigenvalues
A
af A

Q It Ais invertible, then the eigenvalues of AL are of form , where A,
are the eigenvalues of A
{=
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There are interesting relations between some properties of a matrix and its eigenvalues. For
instance, the trace of a matrix is equal to the sum of its eigenvalue by the determinant is equal to
the product. The rank of a matrix is equal to the number of nonzero eigenvalue. Note that if a

eigenvalue has multiplicity greater than 1.

For instance, if two distinct eigenvectors X1 and X2 both have eigenvalue A we would count A
twice. Also we can describe the eigenvalues of A™ in terms of the eigenvalues of A provided of
course, A is invertible. The eigenvalues of A™* maybe of the form 1/Ai, where Ai is an eigenvalue
of A.
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) (A= N =1

ra—

i=A
; ail A
£
-1

Since the eigenvalues are distinet, A; 3 A, %0 & &k Thus the set of [k — 1)

eigenvectors 15 also linearly dependent, violating cur assumption of it being
;:(d? smallest such set. This is a result of our incorrect starting z2ssumption
whtence proved by contradiction.
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Now let us have a look at an interesting theorem about eigenvalues and eigenvectors. The
theorem goes as follows. And for matrix as all its eigenvalue is distinct when its eigenvectors are
linearly independent which is proof is by what is called proof by contradiction. This theorem

does not hold that means there is a set of A eigenvectors such that it is linearly dependent.

That ith vector in the set BBI and the corresponding eigenvalue will have the i. Note that we are
considering the smallest such set. Since the set is linearly dependent this means there exists real
consonants Ai such set summation Ai Vi=0. Now let us multiply both sides of the equation by A-
AK(i). Since VK is an eigenvector of A, A-Ak(i)Vk will be equal to 0, we can understand this from

the characteristic equation.



Hence the term corresponding to Vk disappears from the equation since it goes to zero. Now for
the remaining eigenvalues since we know they are distinct the term Ai-Ak cannot be equal to 0.
Note that A-AkixVi simplifies to Ai-Ak(Vi) since AVi=IVI. For we would now, we can think of
Ai(Mi-Ak) as a new constant Vi this means now that we have a summation running from

I=1toi=k-1 such that Vi Vi=0.

However, we can assume that this is the, that the sake of size k was the smallest set of linearly
dependent eigenvector. However, now we have an even smaller set, this contradictions starting
assumption. Hence, such a set of k linearly dependent eigenvectors cannot exist for any k greater

than equal to2. Hence all are eigenvectors are linearly independent, hence our theorem stand to.
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Diagonalization

Given a matrix A, we consider Lthe matrix S with each column being an

eigenvector of A

Diagonalization gives us a way of representing a matrix in terms of its eigenvalues and
eigenvectors. Let us consider a NxN? matrix A where the amount of matrix where every column
is an eigenvector of A/S. On multiplying S/A each column would get multiplied by Ai since the

column itself is an eigenvector of A.



This right hand side can then be simplify and the product of two matrices. The first one mean is
itself by the second one B the diagonal matrix where the i a diagonal matrix the eigenvalue Ai.
Remember the DLH is AS.
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Diagonalization

@ 574A5 is diagenal

@ Mote that the above result is dependent on S being invertible, In the
case where the eigenvalues are distinct. this will ke true since the
eipervectars will be linearly independent
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Now we have the equation AS-=SA where A is the diagonal matrix of eigenvalues. On
simplifying this we get A=SAS=, this is a diagonalization of A. Note that S*AS is a diagonal
matrix since S™AS is nothing but A the diagonal matrix of eigenvalues. This result is dependent

on S being invertible.

It will bored with the eigenvalue of a matrix at distinct. Since the eigenvectors would then be
linearly independent. This would mean the problems of S would be linearly independent, and

hence S would be pulled and as a consequence invertible.
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Properties of Diagonalization

@ A square matrix A is said to be diagonalizable if 45 such that
A= SAS]

@ Diagonalization can be used to ssimplify computation of the higher
powers of a matrix A if the diaganalized farm s available

A" = (SASTH(SAS™H .. (SASTY

AP=SK5~

A" is simple te compute since it is 3 diagonal matrix

Jaraary 19, 2008

Then do we see that the square matrix is diagonalizable. Well when such a diagonalization exist
we saw that we needed S to be invertible for the diagonalization to exist. Another advantage of
diagonalization is that it simplifies the process of computing A", the first represent every A in

diagonalized form.

Now you can see that the S™ of the first term and the S of the second term would multiply to give
us time. Similarly for the second toward, third, fourth and so on, in this way by regrouping the
terms we get A"=S A"S™. Note that it is very easy to compute the nth power of a diagonal matrix.

Since you just have to realize every diagonal element to the power of n. In this way the



diagonalization has left us simply by the process of computing A" without the simplification we

would have needed to multiply a non-diagonal matrix 10 times.
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Eigenvalues & Eigenvectors of Symmetric Matrices

o | wo important properties for a symmetric matrix A

Thus. A
o Definiteness of a symmetric matrix depends entirely on the sign of its
eigenvalues. Suppase A = SAS' | then
T A = xTSAS T = yTAy = 37 a2
) 2 ™M)
e Since _'r.; = 0, sign of expression depends entirely on the A;'s

example, if all A; = 0, then matrix A is positive definite
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If a matrix is symmetric then all its eigenvalues are real numbers. Also if its eigenvectors are also
normal that is they are mutually orthogonal and normalized. This means that the matrix of

eigenvectors S is also orthogonal. We have seen that for orthogonal matrices that inverse and a

transpose are the same.

Hence we can write A=SAS' as when the diagonalization we defined earlier. For symmetric
matrices the definiteness can be inferred from the signs of their eigenvalue. Suppose that
A=SAS" now taking the quadratic form with respect to A for the vector X, X'A X simplifies to
YT Ay, thereby is STX.



This further simplifies to sum over iriyi2. Now for a matrix to be positive definite this term must
always be positive. Since yi? is always greater than 0 anyway this i of this term depends on the
eigenvalue. All the eigenvalues are positive, the matrix is positive definite.
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Eigenvalues of a PSD Matrix

Consider a positive semi definite matrix A Then ¥% which are
eigenvectors of A.

FTAT =0

AX f X>Q

MEPP =0

Hence, all eigenvalues of 2 PSD matrnx are non-negztive.

7
i
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If we know that the matrix is positive semi definite or PSD then what can we say about its
eigenvalues. Since the quadratic form of a PSD matrix is non-negative for any vector X this
should hold for the eigenvectors too. Now since AX= AXX'AX simplifies to A norm of X?

greater than equal to 0.

Since eigenvectors are nonzero by definition the square of the norm is always positive. This

means that every eigenvalue of A is non-negative.
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Singular Value Decomposition

Q@ We saw that diagenalization is applicable only 1o square matrices, \We
need some analogue for rectangular matrices taa, since we aften
encounter them, e.g the Document-Term matrix. For 2 rectangular
matrix, we consider left singular and right singular vectors as twa
bases instead of a single base of eigenvectors for square matrnices

The Singular Value Decamposition 1s given by A = UZ V' where

Ue R™M T ¢ R™*0 and V € RO,
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We looked about diagonalization which stood in our square matrix of size nxn and represented it
in terms of its eigenvectors. However, we cannot directly apply by the same diagonalization for
rectangular matrices, since the notion of eigenvector is defined only for the square matrix. They

need a diagonalization for rectangular matrices since it come to them often.

For instance, the matrix of N data points out integers or the matrix of n documents and R terms.

For the rectangular matrix A or size mxn we can represent it in terms of the eigenvectors of AT'



and ATA out of which our square matrices. This is known as the singular value decomposition A

is represented as UV where U is a mxm matrix T is a mxn matrix and V is a nxn matrix.
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Singular Value Decomposition

© U is such that the m columns of Uf are the cigenvectors of AAY | also
knowin as the left singular vectors of A
© V is such that the n columns of V are the eigenvectors of A" A, also
knawn as the right singular vectors of A
© L is a rectangular diagonal matrix with each element being the square
root of an eigenvalue of AA' or AT A
Significance: SVD allows us to construct 2 lower rank approximation of a
rectangular matrix. We choose only the tep r singular values in I, and the

: T
corresponding columns in U and rows in V'

@
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The three N is UZV are as follows. In U every column represent an eigenvector of AAT, in V
every column represents as eigenvector or A'A I is a rectangular diagonal matrix if each
elopement being described of an eigenvalue of AAT or ATA. Now note that AAT and ATA have

different eigenvectors with the set of eigenvalues is the same.

This is because suppose ATAX=AX for some eigenvector X and eigenvalue 1. Now multiplying
both side by A we get AAT whereas AX=LAX hence AX is an eigenvector of AA" while X is

also an eigenvalue of AAT, this is why AAT and ATA have the same set of eigenvalues. The



significance of this decomposition is that we all know in U, V and X such that the eigenvalue is

magnitude is larger come first both in U and V at the column or and also along the diagonal in X.

Then we can drop everything greater than index R to get a R dimension and load and
approximation of the original matrix A. Since approximate form of A we represented as U which

is an mxr matrix, X which is a rxr matrix, and V which is a nxr matrix.
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Matrix Calculus

@ The Gradient
Cansider a function £ - W' — R The gradient V4#{A) denates
the matrix of partial denvatives with respect to every element of the
matrix A. Each element is given by (W af(A)); = ,,
The Hessian
Suppose a function f 1R R takes in vectors and returns real

numbers. The Hessian, de das Vif(x) or His the n » n matrix

of partial derivatives. (V2{x}); "',,_'.,:,;i_'. Note that the Hessian is

always symmetric.

Note that the Hessian is not the gradient of the gradient, since the
aradient is a vector, and we cannot take the gradient of the vector.
However, il we do take elementwise gradients of every element of the

aradient, then we can construct the Hessian.

13raaey 24, J008

Consider function F which takes in matrix systems of dimension mxn and outputs real of course.
The gradient is the matrix of partial derivatives. The i,j element of AF(A) or the gradient of F(A)
is the partial derivative of F(A) with respect to Aij. Consider it with time of function which takes

in at the in dimensional vector and returns a real number.

The Hessian for this function is defined as follows, the i,j the element of the Hessian is given by
first differentiating F(X) with respect to the j™ component of X, Xj and then the ith component

Xi. We can see that the Hessian would be nxn matrix.
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Differentiating Linear and Quadratic Functions

o T x . ,
If #(x} = b"x, for some constant b £ R” Let us find the gradient of f

'AI: X :I = Z b‘: X;
-1

Of(x)

by

iihT Ar s ¥4
We can see that " * — b, We can intuitively see how this relates to
differentiating £[{x) = ax with respect to x when a2 znd x are rezl scalars.

)
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Now let us study how will you find the gradient for some simple vector functions. Consider the
function F(X)=B"X where X is an in dimensional vector and B is also an in dimensional vector.
F(X) can be written down as sum over i=1 to i=n BiXi. On differentiating this with respect to the
8" component of the vector X we can do F(X) by dXA=Bk.

The gradient of F(X) is given by the vector V, you can see how this intuitively remains to the
first derivative of the scalar function F(X)=AX which is equal to A.
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Differentiating Linear and Quadratic Functions

Consider the function f{x} = x' Ax where x ¢
known symmetric matrix

L
1 -1

Gf{x) e
WX} S A
= S N Apxix; 4 Apexixy, +
I T | 2 i ! il ;
" Rerpderr s
izk j#k i#k

fix)= \ B Ajxix

Xy

laruary 24 2008

We had earlier looked at a type of function called the quadratic form defined for an nxn matrix
A. The quadratic form with respect to matrix A is a function F(X)=X"AX so it takes in a in
dimensional vector X. Now let us have a look at how one can find the gradient and Hessian for

the quadratic form of an known symmetric matrix A.

They can write down F(X) as sum over I 1 to n, sum over j=I to n AijXiXj. We can split up this

summation into four terms based on whether i and j are equal or not equal to k. Finally we get



oF(X) for oXK=Y sum over i=1, i=n AkiXi. Note that the simplification from the second last

step with the last step can only be done if A is symmetric.
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Differentiating Linear and Quadratic Functions

Thus V(%7 Ax) = 2Ax. Now. let us find the Hessian H.

Abvnys Garzpan, Vann Laagl

Thus we get the gradient of XTAX = AX. Similarly, on further differentiating every element of
the gradient by XK we can drive the Hessian of the function. The Hessian of this function comes
out to be 2A.

IIT Madras Production
Funded by

Department of Higher Education



Ministry of Human Resource Development
Government of India

www.nptel.ac.in

Copyrights Reserved


http://www.nptel.ac.in/

