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There is another way of looking at learning with the learning control right. So I am going to 

think about how can I learn control using a value iteration kind of an approach right. So what do 

I want, so that is my target right and that is my current estimate of something right. So remember 

I am learning the Q function, so what does the Q function tell me, take an action whatever is 

action given in the Q arguments right. 

 

And then behave optimally that after right, the first action is whatever I take right there is no 

question of optimality or anything about it. 
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That is being the thing that I am looking at right, I should move away very quickly after writing 

something on the board that other vegetable waved me away right. I mean people x kind of buy 

that right. So what I am really looking for when I say Q* I say is expected value of RT+1 which 

is what I get for performing A+ gamma times V* of whatever comes afterwards correct. 

 

But we know about V* we can write V* in terms of the Q function how is that V* max it is a 

best right there is no π here talking about optimal value function right. So this is some term equal 

to correct. Now we can now do our stochastic updating rule this is my target this is my current 

estimate, so putting this together I can just write a rule like this right. 
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So what will be my rule, so target-current estimate right, let us see people get that right I mean 

whatever you are trying to get earlier we were just trying to take the definition of the Q function 

is the expected value of the return. Now I am looking at the definition of the Q function as I 

expected optimal Q function as expected value of this expression, but now I am converting that 

into an update rule okay. 

 

Now I can put in the rest of it around this so what is a nice thing here just like in the expected 

SARSA I do not have to pick the action before hand I can pick the action afterwards also right 

because I am only doing the max right. So I do not have to do the pick an action first and then 

apply it that I can move this within the loop try to remove this I can flip this around basically. 

 

Why is it important why am I so concerned that is because yeah, so there are a couple of things 

here so one thing the most straightforward answer is it could come back to S in which case I 

would have change the value function right I would have used one year for updating this here 

assuming that, that is the A I am going to take right. 

 

But then I would actually perform a different A in which case my return see what I was trying to 

do here was substitute my return right. So I am going to see RT+1+gamma this because that is in 

there is a sample of the return right. So if the sample of the return that means I should actually be 



sampling according to whatever updation I am making, but I would not be doing that I will be 

sampling my different action. 

 

If I picked another action after I do the updation okay so I will be breaking the assumption that 

this is a approximation for the return. So that is the reason we need to pick the action beforehand 

and then stick with it right. And later on when we see how we will be using a an approximate 

function value function right, we talked about contextual bandits right, we talked about policy 

parameterization like that you can use a value function parameterization. 

 

So when you use that you do not have to come back to the same state right because of the 

functional form if I change the value in one state it may change it in some other state also. So the 

whole policy would get up now messed up so it becomes a little tricky then. So essentially the 

trajectory along which I am doing the updation will be somewhat a messed-up version of the 

trajectory which I am actually taking right. 

 

So it might lead to some trouble in convergence this way, but that section I will actually be 

performing right so it is fine. As long as that is actually performing it is okay your question is 

what you keep changing the policy anyway right yeah that is why I said we do not use a explicit 

representation of the policy anywhere so it is okay.  

 

So I really do not know what is a policy I am estimating the value function of is just that as ∑ 

and α go to 0 it will converge to something at the end right. As long as the return I am using here 

when I actually roll it outright I can roll it out, when I roll out the return name whatever I am 

using is using all the actions I took then I am fine. 

 

What is it, yeah we really on the initial value of Q that is a policy you start off this here. So you 

could actually make it a valid policy or you could start off with all zeros in which case it is a 

uniform random policy, it will just be call actions with equal probability to begin with right. So 

you can do the same thing here which is empty space okay. 

 



No not it is equal you just pick it the sequence happens after you have done the updation okay. I 

am picking it according to QST before I make the update here I am picking it according to QST 

after I make the update QST+1 okay here when I say picker action for QST+1 that is before this 

updation is happening. 

 

So if I use Q volt Qnu  you will see the theorem using Q volt here I am using Qnu for picking the 

action 80+1, I also put that thing in bracket I will come to that why I put that pick action 80 

according to QST I put that in bracket but you can see the difference between this algorithm and 

that algorithm right nothing much except for that simple change in the update rule if you cool α 

and ∑ properly it actually converges to the optimal policy. 

 

So what will the second algorithm converge to, optimal policy okay provided cool the α properly 

we had decreased α properly will converge to the optimal policy and this one if you have to 

decrease both α and ∑ properly it will eventually converge to the optimal policy. Yeah for α I 

have the usual stochastic averaging formula right. 

 

So yeah, tell me 1MIT is one one thing that you fit the conditions right, so summation α should 

be infinity, summation α
2
 tribulation infinity right. So that is basically the conditions for α so as 

sum over all α is so essentially I had to put an αt there and sum over all αt so just summing over 

αt should be infinity, summing over αt
2
 should be bounded less than infinity. 

 

So that is essentially the conditioner because the αt equal infinity tells you that you are making 

enough updates and αt
2
  goes to let mean converges to a point listen infinity means that you will 

eventually stop making updates what, good that is what the rest of the class is all about, but so 

this algorithm 1 the right is probably the most popular reinforcement algorithm people use I said 

when I wrote down SARSA I said this is the second most popular right. 

 

And that is the first most popular and it is called Q-learning. So chronologically td0 came first I 

think which proposed it in like 84 yeah I think which proposed td0 and 84 and short convergence 

in 88 or something and Q-learning was proposed by Chris Watkins in 89 and SARSA was 



proposed by Rummery and Niranjan may be 91, 92 and I do not know the exact date sometime 

around that. 

 

So surprisingly both Watkins and Rummery Niranjan are from England. So lot of the early 

algorithms for RL came from England. And Q-learning is amazing so what is even more 

amazing about Q-learning is that since I do not care what is the sequence on which you are 

picking the actions right here I amusing an approximation to the optimal return right I am not 

looking at the current written. 

 

If I am looking an approximation to the optimal written so I do not care about the trajectory in 

fact in Q-learning I do not even have to sample according to any trajectory in fact the next action 

I execute need not even come from ST+1, I can arbitrarily reset if I have a simulation model 

right I can arbitrarily reset to some other state right. 

 

And then sample one action from there update Q-learning and then go and take action from 

somewhere else, some other state update you think you can just do a proper asynchronous 

generalized policy iteration kind of an approach, I just sample from all over the place just take 

one step each and keep updating it. 

 

But still it is better to update it along trajectories like we saw in the argument for RTDP right, if 

you updated along trajectories it is more meaningful because the values should have more likely 

to have changed along those trajectories right. So that is essentially why we sample according to 

the trajectories. 

 

So this thing need not be an ∑ greedy sample at all right. So I can sample actions arbitrarily I can 

just take pick an action AT and ST randomly okay, I does not have to follow any rule. So what 

does this do it just tells me which action I am going to update next right. If I am not sampling 

according to trajectories it only tell me which action I am going to update next. 

 

So why do you want to pick according to this, so that you can just like an RTDP so you can 

focus the updates along the most most likely paths, so what the reason you do it ∑ greedy 



fashion is that you quickly want to converge to the most likely path that you are going to take 

under optimal policy and you want to do the updates along that most likely path okay. And that 

is why you use the ∑ greedy sampling for Q-learning. 

 

And so what are the advantage of SARSA, SARSA you can continue to explore right and while 

exploring you learn something that is taking into account the exploration. So what does Q-

learning do that is why I am saying you can arbitrarily with Q-learning but if you choose to 

behave according to the Q function you are learning, here it does not take into account the fact 

that you are doing exploration okay. So why would that matter. 
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So it is a simple grid world problem called the cliff world. So those squares marked in red of 

represent a cliff so if the agent wanders over the cliff is going to get a reward of -100 and to top 

it off agent will also die okay. Basically episode will end the agent will get a reward of -100 and 

it goes back to the beginning and you start all over again maybe incarnate and you start going all 

over again. 

 

And otherwise you get a reward of -1 for every time step that you move okay. So everything is 

deterministic so for every time step that you move you will get a reward of -1 okay and yet we 

will try to get from this start to the go as quickly as possible no gamma here gamma is one right 

whenever I say no gamma does not mean gamma 0 means gamma is one okay. 

 

And so what do you think will happen and while learning I use a ∑ greedy action selection ∑ let 

us say I fix it at 0.1 I am not going to reduce ∑ I will fix ∑ at 0.1 okay. So what do you think is 

the policy what do you think Q-learning will do what do you think SARSA will do. Well we said 

both the learn optimal policies and what is optimal policy here. 

 

Alright so, here you go up there you go left right, right right, right, so this is the optimal policy of 

course if I want to write down the optimal policy elsewhere maybe I can just write down arrows 

everywhere does not matter right. So I can do down arrows everywhere or right everywhere 



except the last column where I go down this is optimal policy and there is no question about 

there is this is the optimal policy right. 

 

At least for these states right for these states you have a choice you can either go right or down 

for these states this is the optimal policy right. Okay will Q-learning find this optimal policy yes, 

will SARSA find this optimal policy. In this case it would not because I have fixed ∑ at 0.1 right. 

So what will SARSA learn, will the show up if any ∑ is at a 0.1 let us say. Yeah it may take a 

safer and safer row. 

 

If I give you more rows right it will probably go but then this is too small right it basically needs 

to exploratory moves to fall off the cliff and I given it like 10 moves in which to take this two 

exploratory moves. So it is very high probability it will take those two exploratory moves right. 

So it will try to stay as far away if it just goes here right this will be just two moves right now 

this is three moves. 

 

So that is the reason it will try to go as far away as possible because the reward is sufficiently 

negative I said -100 right so that is really really bad negative reward. So it will try to go further 

and further away so this is the difference between SARSA and Q-learning right. So SARSA 

takes into account the fact that you are doing the exploration right, while Q-learning might learn 

the optimal policy right, it would also end up killing you more often while learning the optimal 

policy right. 

 

There are also more you are name answers for this because if you continue to explore right not 

this is not exactly name but slightly less compelling reasons. If you are going to continue to 

explore after you finish learning right it is better to learn the policy through SARSA then through 

Q-learning, because Q-learning assumes that eventually you are going to be executing the 

optimal policy right. 

 

But that is a reason for us not to execute the optimal policy greedily ever why, more but better 

than forecast is everyone there is a reason for us not to use the optimal policy greedily even after 



sufficient learning non-stationary. It is not the stochastic I am worried about it is a non stationary 

I am worried about right. 

 

So if you are convinced that the world is not changing then great you can start behaving greedily 

after some time, but there is a chance if the world might actually some things might happen right, 

or suppose you are robot learning in a world right. So it is possible that obstacles can be moved 

around right. So it do not want to become so rigid that you are completely unadoptable when 

things change right. 

 

So that that is they way, so you want to keep the option of being able to explore and discover 

new things. So you do not want to turn off your ∑ ever, but in such cases it is better to use 

SARSA than Q-learning, because Q-learning kind of ignores exploration at all right and it 

converges to an optimal policy and then it sticks there right. 

 

So right and so the problem with the converging to optimal policy in sticking there is this right, if 

I want to keep my ∑ on and I will keep falling off the cliff by every one single move I make 

wrong where exploratory move I make I will keep falling off the cliff. So on the expected reward 

I get for executing this optimal policy will be far lesser then what my agent believes it should be 

getting because agent is ignoring the exploration okay. 

 

So that is the crucial difference between Q-learning and SARSA that is why you would like to 

use SARSA in many cases. Q-learning is actually good in yeah in some aspects yeah, there is no 

danger and the state space is very large. So why should the size of the state space matter see it is 

exploring why I mean Q-learning can explore much more than SARSA it right because it ignores 

exploratory policy completely you can actually have a region became completely randomly and 

still learn the optimal policy in Q-learning. 

 

In fact that makes Q-learning of policy method right you can do arbitrary exploration and still 

learn the optimal policy right. So I am at the estimation policy for me is the optimal policy and 

the behavior policy can be something completely random. So that is one reason you would want 

to use Q-learning in a large state space because I can behave arbitrarily. 



 

So that I get to explore a larger fraction of the state space, everything will be slow both will be 

slow. Why would you think Q-learning will be slower compared to SARSA. So I am not a 100% 

sure about the convergence rates between ∑ I mean Q-learning and SARSA I am not sure about 

the convergence rates, I do believe that Q-learning converges faster than SARSA in general. 

 

And I am not sure about large state space issues but I will have to look it up. Yeah but you 

should know that these are the basic algorithms right if you want to operate in large state spaces 

you will be using something else over on top of this, this would not be using plain vanilla Q-

learning and SARSA in large state spaces. 

 

So there are other issues that will come into play but I am not 100% sure about the comparison 

of rates of convergence between Q-learning and SARSA right great. So any other questions on 

these two okay, so I have this three actually we talked about expected SARSA as well right and 

in fact we can think of all kinds of hybrid algorithms right. 

 

So for example, you can think of an algorithm that will take one step two steps according to the 

current policy and then you say max right. So what do I mean by that it is something like this 

right. So this is, this part is on policy right, so that class is off policy right. So that is why it is a 

hybrid kind of thing so you can do all kinds of, different kinds of samplers for your value 

function okay. 

 

So in fact it is more common to use the Q function there, so that is still on policy everything is on 

policy but I am using more of the actual samples and less of the bootstrapping right. Why I say 

less of the bootstrapping because it is discounted by a larger power of gamma. So the total 

contribution of the bootstrap thing will be coming down okay. 

 

So I can do all kinds of modifications to the return, so in fact there was a time when we are 

trying to get a reinforcement learning agent to play what is the thing called a hockey right. So 

somebody in CF, I wanted to do a project I wanted to get an RL agent to play air hockey in fact, 



it was building a physical system that was going to move the slider around and he wanted to use 

RL to control it. 

 

And then he turned out in the simulator at least that he had built using a three-step return like 

RT+1, RT+2, RT+3 then  the Q function of the rest they turned out to give a better performance 

or whatever reason right. So it is kind of a tied to the the stochasticity in the system and how far 

ahead is the system predictable and so on so forth. 

 

So I think it turned out that case for at least for three steps into the future the system was more or 

less predictable and therefore he could use this kind of writer. So it is very complicated things 

right it is not easy to figure out what is the right look ahead that they should be using for these 

returns okay. So they more or less done with chapter six. 
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