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One of the important concepts in probability theory is that of the random variable our random 

variable is a variable whose value is subject to variations that is a random variable take on set of 

possible different values each with an associated probability mathematically a random is a 

function from the sample space to the real numbers let us consider some examples suppose we 

conduct an experiment in which we roll 3 dice and are interested in the sum of the outcomes for 

example the sum of 5 can be observed if two of the dice show up two piece and the other dice 

shows up as 1. 

 

Alternatively the sum of 5 can also be observed if one shows up as 3 and the other 2 dice show 

up 1 each since we are interested in only the sum and not the individual results of the dice rolls 

we can defined a random variables which maps the element way outcomes that is the outcomes 



of each die rolled to the sum up the three rolls similar in the next example we can defined a 

random variable which counts the number of heads observed when tossing a fair coin 3 times 

note that in this example the random variable can take values between 0 and 3 where as in the 

previous example the range of random variable is between 3 and 18 corresponding to all dice 

showing up 1 and all dice showing up 6. 
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Consider the previous example experiment of tossing of fair coin three times let x be the number 

of heads obtained in the 3 tosses that is x is a random variable which maps each elementary out 

come to a real number representing the number of the heads observed in that outcome this is 

shown in the first table the first row list out each elementary outcome and the second row list out 

the corresponding real number value to which that elementary outcome is mapped that is the 

number of heads observed in that outcome, 

 

Now instead of using the probability measure defined on the elementary outcomes or events we 

would ideally like to measure the probability of the random variable taking on values in it is 

range what we are trying to say here is that when we defined probability measure we where 

associating each event that is sub set of the sample space with the probability measure when we 



consider random variables the events correspond to deferent subsets of the sample space which 

map two different values of the random variable. 

 

This is illustrated in the second table the first row list out the different value that the random 

variable X can take and the second row list out the corresponding probability values assuming 

that coin tossed is a fair coin this table describers an motion of the induced probability function 

which maps each possible value of the random variable to it is Associated probability value for 

example in the table the probability of the random variable taking the value of 1 is given as 3/ 8 

since there are 3 elementary outcomes in which only one head is observed and each of these 

elementary outcomes as probability of 1/ 8. 
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From the previous example we can define the concept of the induced probability function let Ω 

be a sample space and P be probability measure let x be random variable which takes values in 

the range X1 TO XM the induced probability function Px on X is defined as Px X =xi = to the 

probability of the event comprising of the elementary outcomes ωj such that the random variable 

x mat ωj to the value xi. 
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The cumulative distribution function or cdf our random variable X denoted by FX(x) is defined 

by FX(x) -= the probability of the random variable taking on a value less than or equal to x for all 

value of x for example going back to the previous random variable which counts a number of 

head observed in 3 toss of a fair coin the following table shows the intervals corresponding to the 

different values of the random variable x along with the corresponding value of the cumulative 

distribution function. 

 

For example  FX= FX(1) = ½  because the probability that the random variable X as a value of 1 

now lets us go back to the previous example. 

 

 

 

 

 

 



 

 

(Refer Slide Time:  05:04) 

 

 

 

Right the probability that the random variable x as a value 1 is 3/8  the probability of x that the 

random variable x = 0 is 1/8 and therefore. 
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The probability that the random variable x takes on value less than or equal to 1 is 1/8+ 3/8 = 4/8 

or ½  
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a function is a valid cumulative distribution function only if it satisfies the following properties 

the property simply states that the cumulative distribution function is non decreasing function the 

second properties specifies a limiting values limit extents to - ∞ Fx(x) = 0 and limit extends to ∞ 

Fx(x) = 1 the third property specifies right continuity that is now jump occurs when the limit 

point is approach from the right this is also shown in the figure below. 
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A random variable x is continuous if it is corresponding cumulative distribution function is a 

continuous function of X this is shown in the second part of the diagram random variable X is 

discrete if it is cdf irrespective function  F this is shown in the first part of the diagram the third 

part of the diagram shows the cumulative distribution function or a random variable which as 

those continuous and discrete parts. 

 

 

\ 
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The probability mass function of pmf of a discrete random variable X is given by Fx(x) = 

probability of X = x or all values are x thus for a discrete random variable the probability mass 

function of that random variable gives the probability that the random variable is equals to some 

value for example for a geometric random valuable X with parameter P the PMF is given as 

Fx(x) = 1-P 
x-1

  v P for the values of x = 1, 2 and so on and for other values of X the PMF = 0 a 

function is a valid probability mass function if it satisfies the following properties first of all the 

function must be non negative secondly the Σ over all X the value of the function summed over 

all values of X should be =1. 

 

For continuous random variables we consider the probability density function or PDF of a ran 

continuous random variable is the function Fx(x) which satisfies the following the integral form - 

∞ to x Fx(tdt) is = to the cumulative distribution function at the point x similar to the PMF the 

probability density function should also satisfy the following properties first of all the probability 

density function should be non negative for all value of X second integrating over the entire 

range the probability density function should sum to 1. 
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Let us now look at expectations of random variables the expected value for mean of a random 

variable x  denoted by a expectation of x is given by integral - ∞ to ∞ x into Fx(x) dx now that 

Fx )x) is here is the probability density function associated with the random variable X  this 

detention holds when x is a continuous a random variable in case that X is  a discrete random 

variable we use the fowling definition expectation of x is = to  sum over all x such that 

probability of x greater than 0 that is we consider all values of the random variable for which the 

associated probability is greater than 0 x x Fx(x). 

 

Here Fx(x) is the probability mass function of the random variable x which essentially give the 

associated probability for a particular value of the random variable thus leading to this definition. 
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Let us now look at an example in which we calculate expectations that the random variable x 

take values -2, -1 1 and 3 with probabilities 1/4, 1/8. ¼ and 3/8 respectively what is the 

expectation of a random variable Y = X
2
 so in this question we are given one random variable 

the value which this random variables takes and it is associated probabilities what we are 

interested in the expectation of the random variable Y which is defined as Y= X
2 

so what we can 

do is we can calculate the values that the random variable Y take along with the associated 

probabilities since we are aware of the relation between Y and X. 

 

Thus we have Y taking on the value 1, 4 and 9 with probability 3/8, 4/4 and 3/8 respectively 

given this information we can simply apply the formula for expectation and calculate the 

expectation on the random variable Y this is as follows give a result 19/4 another way to 

approach this problem was it is to directly use the relation Y= X
2
 in calculating the expectation 

thus expectation Y is simply the expectation of the random variable X
2
  so in place in the 

formula for expectation instead of substituting X we substitute X
2
  thus we have sum over all X 

X
2
 into probability of X= X calculating the values we keep the same answer of 19/4. 
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Let us now look at the properties of expectations let X be a random variable AB and C constants 

and G1 A and G2 are function of the random variable X such that they are expectations exits that 

is they have finite expectations according to the first property expectation of Ax G1(x) + b times 

G2(x) + C = A times expectation of G1(x) + B times expectation of G2 (x) + C this is called  the 

linearity of the expectations there are actually a few things to note here first of all expectation of 

a constant is = to the constant itself. 

 

Expectation constant times a random variable is equal to the constant into the expectation of a 

random variable and the expectation of  the sum of two expectations can also be represented as 

the sum of the expectations of the two random variables note that here the two random variable 

need not be strategically independent according to the next property if a random variable is 

greater than equals to 0 at all points then the expectation is also expectation of that random 

variables is also greater than equals to 0. 

 

Similarly if one random variable is greater than another random variable at all points then the 

expectation of those random variables also follow the same constrained finally if a random 

variable as values which are which lie between two constants then the expectation of that random 

variable will also lie between those two constants. 
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Let us now defined movement for integer n the n
th

 movement of X is µ’ or n = E(X)
n 

also the n
th

  

central movement of X µn – E(x- µ)
n 

so the difference between movement and central movement 

is  in central movement we subtract the random variable by the mean of the random variable or E 

value the two movements that 5 most common use are the first movement which is nothings but 

µ’ = E(x) that is the mean of the random variable X and the second central movement which is 

µ2= E(x- µ)
2 

  which is the variance of the random variable X. 
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Thus the variance of the random variable X is it second central movement variance of X = E(x- 

µ)
2 

now that µ is just the first movement which can be replaced so it can be replaced by E(x) thus 

we have variance of X = E(X- EX)
2
 by expanding this term and applying linearity expectations 

we will finally get variance of X = EX2- X2 of the EX the positive square root of variance of X 

is a standard deviation of X note that the when as calculating variance the constants add 

differently and  compared to the linearity expression, this is a very useful relation to remember, 

variance of (aX+b) = a
2
Var(X), where a and b are constants. 
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The co variance of two random variables x andy is, cov(X,Y)=E[{X EX}{Y EY}], remember 

that the variance, however the random variable X is nothing but the second central movement, 

thus the variance of a random variable, measures the amount of separation in the b values of the 

random variable, when compare to the mean of the random variable. 

 

For co variance the calculation is done, on a pair of random variables, and it measures how much 

2 random variables change together, consider the diagram below, in the first part assume that the 

random variable is on the X- axis, and the random variable is on the Y-axis, we note that as the 

value of X increases, the value of Y seems to be decreasing, thus for this relationship, we will 

observe a large negative co variance. 

 

Similarly in the third part of the diagram, we can see that as the variable value of variable X 

increases, so does the value of the variable Y, thus we see a larger positive co variance, however 

in the middle diagram, we cannot make any such statement, because as X is increases, there is no 

clear relationship as to how Y changes. 



 

Thus this kind of a relationship will give 0 co variance, now from this diagram, it should 

immediately we clear that co variance is very important term in machine learning, because we 

are often interested, in predicting the value of 1 variable, by looking at the value of the other 

variable, we will come to that in further classes. 
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Closely related to the concept of the covariance  is the concept of correlation, the correlation two 

random variables X and Y is nothing but the co variance of the two random variables 

p(X,Y)=cov(X,T)/ √var(X) var(Y), basically correlation is, normalized version of co variance, so 

the correlation will always between -1 and 1, also since we use the variance of the individual 

random variables, in the denominator the correlation to de divide , individual variances must be 

non 0 and finite. 
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In the final part of this tutorial probability theory, we will talk about probability distributions, 

and list out some of the more common distribution that you are going to encounter in the course, 

before we proceed let’s consider this question, consider to variables, X and Y and suppose we 

know the corresponding probability mass function fx and fy corresponding to the variables action 

Y. 

 

Can you answer the following question? What is the probability that X take a certain value small 

x, and Y take a certain value y, think about this question, if you answered no then you are 

correct, let see Y essentially what we are looking for the previous question, what the joint 

distribution which captures the properties of both the random variables. The individual PMF are 

PDF, in case the random variables are contentious. 
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 capture the properties of the individual random variables only, but miss out on how the two 

variables are related thus we define the joint PMF or PDF, fx,y as the probability that X takes on a 

specific value smaller, an Y takes on a specific value y, for all values of X and Y. 
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Suppose we are given the joint probability mass function of the random variables X and Y, what 

if you are interested only the individual mass functions, of either of the random variables, this 

can be obtained from the joint probability mass function, by a process called marginalization, the 

individual probability mass function thus obtain is also refer thus the marginal probability mass 

function. 

 

Thus if you interested in the marginal probability mass function of the random variable X, ewe 

can obtain this by summing the joint probability mass function over all values of Y, similarly the 

probability mass function of the marginal probability mass function of the random variable Y , 

can be obtain by summing the joint probability mass function over all values of X. Note that in 

case the random variables, considered here are contentious, we substitute summation by 

integration and PMF by PDF. 
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 Like joint distribution we can also consider conditional distributions for example, here we have 

the conditional distribution fxy(X/Y)=P(X=x| Y=y), The relation between conditional 

distributions, joint distribution and marginal distributions, are is shown here, this relation should 

be familiar from the definition of conditional probability that we seen earlier. Note that the 

marginal distribution Fy(Y)=0 is in the denominator enhance it must no equals to. 

 

 

 

 

 

 

 

 

 

 

 



 

(Refer Slide Time: 19:44) 

 

 

 

The overall idea of joint marginal and conditional distribution is summarized in this figure, the 

top left figure shows the joint distribution, and describe how the random variable X, which takes 

on the nine different values, is related to the random variable Y, which takes on two different 

values. 

 

The bottom left figure shows the marginal distribution of random variables X, as can be observed 

in this figure we simply ignore the information to the random variable Y, similarly the top right 

figure shows the marginal distribution of the random variable Y, finally the bottom right figure 

shows the conditional distribution of X given the random variable Y, takes on a value of 1. 

 

Looking at this figure and comparing it with the joint distribution, we absorbed that in the 

bottom right figure we simply ignore all the values of X for which  Y=2, that is the top of their 

joint distribution. 
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In the next few slides we will present some specific distributions, that you will be encountering 

in the machine course, we will present the definition and list out some important properties, for 

each distribution, it would be a good exercise for you to work out the expressions for the PMF or 

PDF, and the expectations and the variances of these distributions on your own. 

 

We start with the Bernoulli distribution , consider a random variable X taking one of two 

possible values, either 0 or 1, let the PMF of x given by FX(0)=p(X=0) =1 where p lies between 0 

and 1, and fx(1)=p(X 1)p, here p is the parameter associated with the Bernoulli distribution. 

 

It generally refers to the probability of success, so in our definition we are assuming that x=1 

indicates the successful trial, and x=0 indicates the failure, the expectation of the random 

variable following the Bernoulli distribution is p, and the b variance is p (1-p), the Bernoulli 

distribution is very useful to characterize experiments which have a binary outcome. Such as in 

tossing a coin we observe either heads or tails, or say in writing an example these are pass or fail, 

such experiments can be modeled using the Bernoulli distribution. 

 



 

Next we look at the binomial distribution, consider the situation when you perform an 

independent Bernoulli trials, where the probability of success for each trial equals to p, and the 

probability of earlier for each trial equals to 1-p, let x be the random variable, which represents 

the number of success in the N trials, then we have probability weather random variable X will 

take on a specific value of x, given the parameters nnp=n choose x that is the number of 

combinations observing x success in N trials into p
x
(1-p)

n-x
 here x is a number going to be 0 and  

n, the expectation of a random variable following the binomial distribution equals to np, the 

variance equals to np(1-p). 

 

The binomial distribution is useful in any scenario where we are conducting multiple Bernoulli 

trials, that is experiments in this outcome is binary, for example suppose we have a coin, suppose 

we toss a coin 10 times, then want to know the probability of 3 heads, given the probability of 

observing an head n an individual trial we can apply the binomial distribution to find out the 

required probability. 
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suppose we perform a series of independent Bernoulli trials, each with the probability each of 

success, let X represent the number of trials before the first success, then we have probability 

that the random variable X will take a value Xx given the parameter P =(1-p
x-1

)p, this definition 

is quite inductive, essentially we are trying to calculate the probability that it takes us x number 

of trials before observing the first success. 

 

This can happen if the first x-1 trials failed, that is with probability 1-p, when the last trial 

succeed, that is with probability P, a random variable which has the this probability mass 

function follows the geometric distribution, for the geometric distribution, the expectation of the 

random variable equals to 1/p, and the variance equal to 1-p/p
2
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In many situation we initially do not know the probability distribution, of the random variable 

under consideration,, but can perform a experiments which will gradually revel the nature of the 

distribution, in such a scenario we can use the uniform distribution to assign uniform 

probabilities to all values of the random variable which are then later updated. 

 



In the discrete case say the random variable can take N different values, the we simply assign a 

probability of 1/n to each of the N values, in the contentious case if the random variable X, takes 

values in the closed interval a,b then its PDF is given by fx(X[a,b])=1/b-a if x lies in the close 

interval a,b, and 0 otherwise. For a random variable following the uniform distribution the 

expectation of the random variable X=(a+b)/2, and the variance equals to (b-a)
2
/12. 
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A continuous random variable X, is said to be normally distributed with parameters μ and σ
2
, if 

the PDF at the random variable X is given by the following expression, its normal distribution is 

also known as the Gaussian distribution and is one of the most important distributions that we 

will be using. The diagram represents the famous bell shape curve associated with the normal 

distribution. 
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The importance of the normal distribution is due to the central limit theorem; without going into 

the details the central limit theorem roughly states the distribution of the some of the large 

number of independent identically distributed variables will be approximately normal, regardless 

of the underline distribution. 

 

Due to this theorem many physical quantities, that are the sum of many independent process is 

often have distribution that can be modeled using the normal distribution, also in the machine 

learning course you will be often using the normal distribution in multivariate form, here we 

have presented the multivariate normal distribution, where μ is the D dimensional mean vector, 

and σ is the d×d covariance matrix. The PDF of the β distribution in the range 0 to 1, which says 

parameters α and β is given by the following expression. 
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 Where the γ function is an extension of the factorial function, the expectation of the random 

variable following the β distribution is given by α / α +β, and the variance is given by α β/α +β
2
 × 

α +β +1. 
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This diagram  illustrates the β distribution similar to the normal distribution in which the shape 

and the position of the bell curve is controlled by the parameters μ and the σ 
2
 in the β 

distribution the shape of the distribution is controlled by the parameters α and β. 

 

 In the diagram e can see a few instances of the β distribution for different values of the shape 

parameters, note that unlike the normal distribution a random variable for following the β 

variable distribution, only in a fixed intervals, this in this example probability the random 

variable takes the value less than 0 or greater then Is equals to 0. 

 

This sends the first tutorial of basics of probability theory, if you have any doubts or clarification 

regarding the material covered in this tutorial please make use of the forum to ask the questions, 

has mention in the beginning, if you are not comfortable with the any of the concepts presented 

here do go back and read up on it. 

 



There will be some questions from probability theory in the first assignment so hopefully going 

to this tutorial will help you in answering those questions and note that we will having another 

tutorial next week on linear algebra. 
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