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So we are looking at right looking at multi-armed band it problems, we looked at a couple of 

ways of solving it so essentially you try to keep an estimate of the value function around, right 

the value function is the expected payoff that you get for pulling in all, right you keep an 

estimate of the value function around and then you be have some expletive fashion with respect 

to that value function that you have right. 
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So either you do epsilon greedy or you do soft max or something and, you get some kind of 

asymptotic guarantees correct, yes okay good, we also spoke about other forms of optimality so 

one of them we spoke about was regret optimality so regret optimality is what, reducing the total 



I mean or increasing the total reward that you get over the process of learning right, so the initial 

loss that you get due, to the exploration you want to minimize. 

 

So that I come as close as possible to the optimal case as quickly as possible right so that is 

essentially what regret is all about and, so we will start by looking at one algorithm which in 

some sense has become the popular most popular bandit algorithm around right now, because it's 

so easy to implement and also gives you not too bad the great bounds okay is called the upper 

confidence bond, the upper confidence bound algorithm or the UCB algorithm, okay. 

 

So I will use slightly different notation today, right not not too different I will try to as much as 

possible I will try to translation the fly, okay to the notation that issued in the textbook right so 

even though I will give we will be giving you some papers to read, we can take care of linking 

the UCB paper and the median elimination paper and other things right, on what will be giving 

you some papers to read and the notation in the papers will be very different okay. 

 

You probably have to spend like half an hour just trying to understand the notation, but when I 

am explaining it in class to the extent possible I will try to map it to the notation is used in the 

book rights, so that you have one uniform set of things that you can keep track of throughout 

right, the changes or the following right, I am going to assume that there are capital K arms right, 

earlier I was assuming there were n arms but the terms of the reason I want to change n is we are 

going to now talk about a notion of time right. 

 

So now so they are going to be pull set every time instant and so on so forth and this should be 

familiar to electrical engineer, so if time is discrete you denote it by n if time is continuously 

noted by T right so I want to be able to denote discrete time, so I want to use n for discrete time 

okay and so we will save n for discrete time and I will not use it for the number of arms, so that 

is the reason I switch to K okay, assume there are K arms and so as before with each arm that is 

associated some arbitrary probability distributions. 

 

I don’t know that whenever I pull an arm I will get a sample drawn from that probability 

distribution it could be where only it could be Gaussian right it could be poised on we do not 



know what distribution it is but according to that distribution we will get a, payoff right and what 

else do we did we assume last time there is the expectation given for that distribution right now 

yeah we assume that the distribution is stationary. 

 

It is not going to change the time right and that there is an expectation associated with that 

distribution which will denote by Q* of A right, when you say Q* of A it is the expectation for 

pulling arum A ok. Let's clear here is a UCB algorithm so there is assume there are K arms so the 

initialization phase is play each arm at least once let play each arms once right, you have to pull 

every arm at least one time you cannot do better than that agree it, I never pull the arm I do not 

know anything about the arms. 

 

So I need to pull each I’m at least one so that is the least so we start off with that and then we do 

the following in a loop, remember what QJ is estimated payoff as expected payoff right so this is 

average reward that we'll be maintaining right there is a value function right for arm J so QJ is 

the estimate that I have a time n right QJ estimate I have a time n for arm J. 

 

So essentially what I am doing is I am taking whatever is the current estimate right, and I am 

adding this expression to that right, and then I am playing the arm that gives me the highest value 

for this total expression right, so the way to think about this is following I will come back to this 

it will show things more precisely later, but let us assume that this is my, Q of arm one right 

whatever is some scale this the x-axis, mean the x-axis let us assume is armed index and the y-

axis is the expected payoff right. 

 

So that is Q1 then I have Q2 say Q3 and Q4, let us say I have four arms right so what the idea 

behind upper confidence bound is to say that hey, I am not going to use just the estimated 

expectations so far right, so I've actually drawn many samples right I can use the samples that I 

have drawn so far to figure out, what is the confidence with which, I can say that this is the 

expectation right. 
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So you can come you can think of giving some kind of a bound around this you can say that ok, 

this is the expectation I have right but the true value of Q1 or Q*1 right the true value of Q*1 is 

going to lie within that band right, so intuitively you can see that the more number of times have 

sampled arm one the smaller is this going to be, right if I have taken a lot of samples then I'm 

more confident about the expectation that I am giving you tell you right we know that as the 

number of samples tends to infinity this QQ will converge to Q*. 

 

So we know that that Q1 will converge to Q*1 if number of times have sampled one goes to 

infinity, so the more the number of samples I draw the narrower will be this band of uncertainty 

right, so likewise I will have a band like this for Q2 right I will have a band like this for Q3, 

another band like this for Q4, so what arm do am I suggesting that you take now, I am saying 

take arm one that is what essentially UCB tells you right. 

 

So why do you think this kind of scenario meta happened I met a chosen arm for a lot of times 

because it seems to have a higher value, so my uncertainty and the value of arm 4 has come 

down all lot right, but arm one I’m not take n of times, arm 3 obviously I have not taken n of 

times, but I am really not inclined to take arm 3 anymore because given my current state of 



uncertainty right, the probability that arm 3 will be higher than this end right, a minute it is very 

small that even though man certainty arm 3 is very high I am not inclined to take that arm, 

because the chance that it will truly be high a chance that it will truly be high is very small right. 

 

While for arm 1 the chance that it might be better than arm 4 it fairly decent so this is interval I 

am Telling You is some kind of bound, that says it with very high probability like the true value 

of Q 1, like within this bond, that means that is a chance I did lie here which case it can be higher 

than Q4  right, so I will k take this if I take this a few more times and let us say after some time, 

my estimate moves up like this but my estimate moves up a little bit but my bounds also shrink 

right. 

 

Now I'd my tonight it might not look attractive compared to Q4, so I will go back to taking Q4 

right, so that is why you can see in this expression I have the total number, of samples I have 

drawn off arm J right, were NJ is the number of times I have sampled, I am j so the larger the NJ 

the smaller this expression is going to become, ok a larger the number of samples I draw the 

smaller this expression will become, therefore this interval will keep coming down. 

 

What that yeah that is more like a normalizing term right it is there in all the expressions all the 

values right all the intervals, that I compute so it is not relatively it is not going to matter but you 

will need it to show some results later, so there is algorithm itself clear right, so they explain 

things here the n is essentially the number of times I have played arm so for any of NJ a number 

of times have played arm J okay. 

 

So you have that pictorial description of what this algorithm is doing great, so what is nice about 

this algorithm it is very simple algorithm in saw that right is nothing about it all you need to do is 

apart from keeping track of QJ you have to keep track of NJ, as well which you are anyway 

doing if you are doing that incremental update right, if you remember last class we wrote the 

incremental update so the step size was any way related to NJ. 

 

So the only additional overhead would be if you have been using constant alpha for your updates 

you will have to remember NJ in addition otherwise it is exactly the same thing like we did for 



epsilon greedy, so instead of random lead deciding which action to take for exploration you do 

not do any exploration also the random color the random number generator also has gone now 

that this is a very deterministic algorithm right. 

 

So what is so great about it yeah, QJ no because the other term might be a very small term Q 

might be a very large then matter, why does it matter, they like QJ like the expected payoff scale 

me something like ah that way okay, fine fine fine fine fine yeah, so all of this this this particular 

form of expression does assume that the rewards are bounded between 0 and 1 right, so yeah I 

will come to that in a minute. 

 

So yeah you are right, so then you can rescale the rewards if you want to write as long as all the 

rewards are positive so you can rescale them to lie between 0 and 1 but if you have negative or 

reverse you'll have to think about always not do this okay. 
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