
Information Security - II

Prof. V. Kamakoti

Department of Computer Science and Engineering

Indian Institute of Technology, Madras

Lecture - 08

Architectural Aid to Secure Systems Engineering

Session - 7: Structured Computer Organization

So, we will start with what we call as Structured Computer Organization.

(Refer Slide Time: 00:28)

Now, there is always a question between, what is you normally in your curriculum we

have something called computer organization and then you have something called

computer architecture, what is the difference between computer organization and

computer architecture? That is a very interesting question, very important question. In

computer organization, is already there in the slide. What you study is what we call as an

application to binary interface, right? So, how does the compiler and operating system

interact with the architecture? That interaction, study of that interaction is the subject

matter of computer organization. We also talk about, how the compiler to machine

language translation happens? And, to understand this translation proper, your instruction

set architecture is very crucial.

So, what we study in the computer organization course is basically the interaction

between computer organization, but the architecture and the operating system and

compiler. And, one very important thing that we study there is instruction in architecture.

Then, we also study about operating system needs this feature how will I provide it?

Compiler needs these feature how will a provide it? For example, compiler needs

pointers; How did I provide it in the operating in the architecture? I had indirect

addressing modes, correct?

The operating system wants to implement Round-robin scheduling. What is the support I

give from the architecture? I have timer interrupts, you got this. So, for everything I put,

is not for stupid, just for the fun of it I keep building architecture. For everything that I

put in the architecture what I need, I have a reason for putting out in the architects. I

putting, of including something in the architecture. There will be a need, who will give

that need? Either the operating system will give that need or it the compiler will give you

the need,. There can be many things, there can be that needs to be you know understood

from this perspective. So, that is what we call as an application to binary interface. Now,

after understanding the interface, now the architecture has made certain promises that I

will do this, I will do this, I will do this, I will do that; now how are those things actually

implemented in practice, that is the subject matter of computer architecture, got it.

So, somebody ask you the question between computer organization and computer

architecture, you should be in a position to give a very categorical clear answer. So, what

we are going to do in computer organization, this particular advance computer

organization which talks about security aids; aids for security from the. We are going to

understand the compiler architecture interface, we are going to understand the operating

system architecture interface, we are going to understand the application software

architecture interface and depending on that the architecture changes. So, the architecture

that I use in a network appliance is different from the architecture I use in a desktop, is

different from an architecture that I use in a mobile phone, is different from an

architecture I use in a server, is difference from an architecture I use in an embedded

system. What dictates those architecture? The way I am going to use that architecture,

and this study of computer organization will tell you what sort of architecture you need to

put for a given type of scenario, you getting this?

(Refer Slide Time: 04:22)

Now, as we have seen this code quite frequently, there is a Programming Language level,

there is an Assembly Language level, there is an Operating System level, there is a Micro

programming level and there is a Digital Logic level. So, there are 5 different levels in

structured in computer organization. Now, the last 2 levels are called the computer

architecture. How do I build the those levels? What is there inside these levels, the micro

architecture and the digital logic level? That forms the subject matter of computer

architecture. Now, there will be a question, so the compilers actually ask for features

from the architecture to induce most sophistication in the programming language. I told

you already a feature. If I want indirect, if I want pointer I am using indirect address, if I

want function calls I needs stack call, like that compilers will ask for several features and

what you will be addressing specifically in this course is more from a security point of

view; what is the compiler going to ask and how does the architecture provide it.

Similarly, the compiled codes as an assembly code, will need some sophistication. For

example, advanced addressing modes; for example, I have a normal variable, I can

address it using some normal addressing. Before, suppose if I have a structure, all of you

know a structure in C, now I want to go and access a structure, I need a little bit

complicated addressing mode; like I will have one register which has a base, base

register, then I will have some offset from that, base plus displacement. Why I need this

base plus displacement? The base will tell you where the structure is stored, the entire

structure will be stored within that structure there will be, what? Other elements, and I

want to access thus elements; it will be some bytes away from that thing. So, that extra

bytes that I need to add, I will store it in the displacement. So, I will have this base plus

displacement. So, there are many, many interesting arc way of expressing the memory

that I need to go and access.

So, those sort of sophistication’s will come here. And other thing is, suppose I want to do

end of say 32 bits, I can do bit by bits separately; one end operation, next end operation,

next end operation, but then I have memory elements which can store 32 bits together.

Like for example, a register can store 32 bits. Can I do a bit wise end of all the register

bits? Then it will make my life very very easy. I can do the bit wise end of all the 32 bits

and that will make my life very easy. So, what will happen in the architecture, I will

introduce one more instruction, we just end off 2 registers. Now, where will I use this?

Suppose, I am simulating a circuit, a digital circuit which has ungates. There are 32

different ungates and I want to evaluate the output of that. If I want evaluate 32 different

ungates, I may do 32 different end operations instead of that I can do it one shot; where

the inputs of each of these registers I will put it on the corresponding bits in the 2

registers, the inputs of each of these gates I will put it in 2 input ungate, thus 2 inputs I

will put in corresponding bits in the registers and I will just do the end of these register.

So, 32 ungates, I can do it in one shot that gives me parallelism. So, that is what resulted

in an instruction called end; that may be one of the reason, correct? So, when I start

compiling the code, when I start looking at the functionality and start compiling the code,

what happens? I will get certain needs from the code like I have to do certain operations,

in order to speed up those operations I will start introducing new instructions and

infrastructure. That is how my instructions set are. Today, it tells instruction sets has

close to some 700 instructions or something like that; 700 plus instructions. What was

the rationale behind adding these instructions? These are all the rations. So, as and when

my different types of applications come in, I start using different types of thing. For old

engineering programs, they use only floating point they may not need this multiple end,

but when you start using computers for doing simulation of circuits you start using this

some multiple end, correct. So, this is how things evolved.

(Refer Slide Time: 09:34)

And then, operating system will also ask lot of things. Like, it will ask for support for

memory management, a glass support for task management, specifically multi-user

operating system were more than one fellow logs into the same system, it should ask for

protection it should (Refer Time: 09:49) virtual memory, context switching so many

things.

(Refer Slide Time: 09:57)

So, what will Intel do or Intel Arm MD? It will understand, understanding how the

architecture basically manages these demands, forms the subject matter of computer

organization. So, what does computer organization on this course will teach you, more

from a security perspective? It will teach you how do I go and manage these demands,

correct. That is made by the programming languages, made by the compiler, made by the

operating system, correct? And, also we add a security thing to this.

(Refer Slide Time: 10:39)

So, let us now start basically with memory management. Now, where this memory

management essentially come up in a big sway? Memory management actually becomes

quite big or becomes complex when we start using what we call as Multi User Operating

Systems. What is a Multi User Operating System? More than one user can

simultaneously log in to the system, and start using it. And the operating system will give

equal amount of share of compute and storage resources to these uses. So, from a multi

user operating system point of view, what is it that we need from the programmer? What

we did that we need from the architecture? We need to have an environment, where it

will become easy for me to program. What do you mean by easy for you to program?

Easy for you to compile, what it means? We will go in the subsequent slides, I will

explain you what we mean by ease of programming. But, I have to program with ease. I

will define ease very shortly. You would have, you at some stage you will not even

appreciate what is ease because you do not know what is happening beyond it.

Now, I have to tell you what is happening beyond it and then express you, if that does not

exists, it would have become a hell for you. It is still now a heaven for you because that

exist and I have to tell you what is that and then you will realize what is Ease, correct?

So, at this stage, let us say, I need to have an environment where I need ease of

programming, then there should be ensure process mobility in the address phase. What I

mean by process mobility? It should not be that, I should for executing this process. I

should load it only in this memory location. I should be in a position to load it anywhere

in the memory and it should execute, because it is a multi user operating system; at any

point of times several users can be using. And, if I have a program which I say if only if

you load it at you know location 1,000 it will start executing otherwise, it will not

execute, it becomes location dependent. It is not possible in a multi user operating

environment. Because, when I want to execute which ever memory is available I should

be in a position to go and load myself into that memory and start executing, I cannot say I

need this particular memory, I will wait for it then you have to eternally wait.

So, I should say any memory you load me, I will go and execute it. So, my compilation,

the way I am built and at the way I am going to be executed should be independent of

where I am loaded in the memory. So, that is what I mean by process mobility in the

address phase. I could move the process from any location to any other location and still

it should start working as if nothing has happened. And then, multi process context

switching is also very, very important. What I mean by multi process context switching? I

move from one process to another process. So, how do I move from one process to

another process? And, when I move I should come back to the original process and start

from where it stopped so, these types of issues are there.

And then, I should also there are many processes that are in execution together, I should

now make protection between these processes. One process should not; a process will

have stack code and data. This fellows stack should, one process A should not look into

the data or this stack of process being, there should be some amount of protection and

isolation across processes. So, there should be both, intra process protections, where the

code cannot go and over write into the stack or over write into it is own itself. So, there is

intra process protection which essentially talks about, separations of the code data and

stacks, so that one will not corrupt another. And, inter process protection between 2

different process is one should not touch another and how it like. So, all these things are

very important from a memory management prospective.

The next one is Virtual Memory. Now, I am giving you 32 bit architecture. I say you have

a 32 bit architecture, what does it mean 32 bit architecture, by the term 32 bit. I can

address 2 power 32 locations of memory. I can do 32 bit arithmetic, there are many

manifestation, but one of the interesting manifestation is I can do one of the interesting

definition is, if I am having a k bit architecture I could address 2 power k bit of memory.

So, I say you have an architecture which can address 4GB of memory. I should allow you

to write programs which can use that 4 GB, correct? I cannot say though it is 32 bit

architecture you can only use these much of amount, but in a multi user operating system

there will be several fellows who are loaded in to the memory.

Now, I say you can use 4GB means the entire memory is not available to you. So,

somehow I will tell you can use 4GB, you make that 4GB program and give it to me I

will execute it somehow. As far as your concern that 4GB is available to you; as for as

your concern the 4GB is available to you in full, you understand this. So, that means, I

am giving you a virtual memory, I am giving you a virtual memory which you can use.

That really, that memory will not exist, it will be virtually available. You think that 4GB

is available you will run the program, somehow I will take your program and with very

less memory much lesser than 4GB I will try and execute and give you back; this is a

notion of virtual memory. How those concepts are implemented? what is the architecture

support needed? Understanding that support, how it is implemented is architecture;

understanding that support is organization. So, memory management is very crucial. In

memory management we will look at these aspects of this course.

So, the first part of ease of programming, process mobility, multi process context

switching, inter intra process protection all these things can be ensured by a concept

called segmentation; memory segmentation. And, we will teach memory segmentation in

full. But, please note that even some of the recent operating systems do not use the

memory segmentation as it is done in inter, they do not use the complete facility of

memory segmentation and that is one of the reason why they are still vulnerable.

(Refer Slide Time: 17:31)

And the virtual memory is ensured by a concept called paging, it is also prevalent in the

both the x 8 6 and arm architectures.

(Refer Slide Time: 17:42)

Now, we will go and talk about what is this Ease of Programming. So, this is how the,

there is a program let us take that c code; if j is greater than k then max is equal to j else

max is equal to k. So, what does this code do? It compares 2 numbers and the maximum

of it, it stores in a variable called max. Now, I write this, I translate it into a code. So,

what you see on the middle is a machine language version of the c code, by this I am also

introducing you to the x 8 6 assembly instructions. Now, there are 2 parts to this code;

one is the actual instruction which is called the code segment and there is another aspect

to this code which stores the data which is called the data segment.

The instruction in the code segment uses the data in the data segment to execute the

program, right. Now, that j b is stored in location 0, k b is stored in location 4 and max b

allocated the location number 8; 0 4 8 are the addresses and I need to make this

assumption. If I do not know this 0 4 8, please note that I cannot go and get the code on

top of it. So, let us for the time being assume that j is stored in 0, k is stored in 4 and max

is stored in 8. Now, what do I do? I move 0 to EAX, means what? The j value is stored in

EAX. EAX is a register, it is a 32 bit register; j is an integer and it is also a 32 bit. So, the

value of j is stored in the register named EAX. So, move is a command to move data

from one location to another location. EAX is a register to which the data comes in, so

first is the destination and second is the source.

If I put a square bracket in Intel essentially, it means I am accessing memory. So, I am

accessing memory location 0 where the value of j is stored, 32 bit value of j is stored and

that I am moving it to EAX; register EAX, which is also a 32 bit register, got it. Now,

why should k b stored in 4 and not in 1? The integer is actually 4 bytes, you got it. The

integer is actually 4 bytes in size and that is why j is allocated 0, I allocate k at 4 because

the 4 bytes are stored in location 0 1 2 3 and so, k will start b store at 4. So, in EBX k is

loaded move EBX comma 4, the second instruction. So, the value of k is now in EBX, I

compare EAX and EBX. That means, when I compare there are something called a flag

register in the system which gets updated because of this compare instruction.

So, there are 2 variables here, the left hand variable and the right hand variable; EAX and

EBX; that is j and k. If the left hand variable is less than right hand variable, there will be

a less than flag that is set. If the left hand variable is equal to the right hand variable,

there will be a 0 flag that is set, why zero? Comparison is basically done by subtraction.

And if the left hand variable is greater than right hand variable then the greater than flag

would be set. So, there will be a less than flag, a 0 flag and a greater than flag. The left

hand flag will be; the left hand variable is less than the right hand variable, equal to, if

both are equal; greater than, if the left hand that is EAX is greater than. So, if j is less

than k then, after doing this comparison then I can take something called a branch

instruction. Branch is I go from one location to another and the branch can be, there are 2

types of branch; one is called the conditional branch, another is called the non

conditional branch.

A conditional branch is one where, that branch is executed if some conditions are true.

For example, JLE stands for jump if less than or equal to. So, if JLE; jump if less than or

equal to 0x7; jump 7 bytes away from me, right? You got this? That 7 bytes would be that

label-1.

So, if EAX is less than EBX or if j is less than k, what I do? This j is less than or equal to

k, then this branch will be taken the JLE will be taken and 0x7; 0 x stands for

hexadecimal, 7 is 7. It will jump to this label-1. Why 7 there? Because, if I compile this

move 8 x and jump 0x5 the 2 instruction in between the total length of that instruction is

7 bytes, so I jumps 7 bytes away from me. So, essentially I come to label-1, you are

getting this? Are you following what I am saying? So, why that 7, because that

intermittent 2 instructions move 8 EAX and jump 0x5 that is following JLE is 7 bytes.

So, now, what happens? Move EBX comma 8, EBX is what? k, right? EBX stores k,

right. So, moved a value of k to 8, what is 8? max. You are getting this. So, if j is less

than or equal to k, may k the maximum. This JLE is 0x7 will not execute when EAX is

greater than EBX that is when j is greater than k; then if it is not, then what you do? You

come to here move 8 EAX, what is 8, memory location 8 is max; so your EAX, what is

EAX? j is stored in EAX. So, j will go to max and then jump 0x5. why 0x5? Because the

next instruction is 5 bits, whatever I store in label-1 is 5 bytes in length. So, I will say

jump 0x5 it comes to label-2, you followed.

So, it just jumps and goes and it starts executing the other code. So, what has happened

here, in the location number 8 which is max; the maximum of j and k which are stored in

0 and 4 is computed and that maximum value is stored in max and that is what this c

code intends to do, you all got this. So, what are the things that have happened here?

Now, let us take, this is the main memory now, this is how the main memory will look

when you start executing a program. There will be some part of the main memory

typically, the lower part of the main memory that is close to address 0, where the

operating system and it is kernel will be loaded; let us say 700 bytes of that is needed and

it is loaded. After that it will all be user process, etcetera. You got this; there will be user

process and other. What is a user process? Process like this;

For every user process there is a code segment, there will be a data segment and that will

be loaded somewhere in the memory. In this case when this program is to be executed, it

is loaded into the memory; there is something called a loader which will load it in to the

memory. So, where at is it loaded? So, there are 2 segments here; one is the code segment

and there is a data segment. The code segment acts on the data segment to do this. So,

where is your code segment loaded? Your code segment is loaded between 900 and 1900

in the right hand side as you see in the memory. Your data segment is loaded between

2100 to 2300, right? So, these 2 are loaded here, and then what happens? So, what is

address of j now? 2100, because the data segment is loaded from 2100; the address of j

will be 2100, the address of k will be 2104, the address of max will be 2108.

Now, there is a register called a segment register. That segment register will store the

base address of that segment. In this case, it is 2100. Now, every memory data access that

is happening will use the address; now if I just execute move EAX comma 0, what is

stored in 0? Some operating system kernel is stored in 0. You understood. Some

operating system data is stored in 0. Move EBX comma 4 some, what is there in 4 in the

main memory? So, what should I do now? Instead of move EAX comma 0, it should be

move EAX comma 2100, move EBX comma 2104, move 2108 comma EAX, you got

this. If I just execute this code segment as it is, then what will happen? I will be reading

some operating system data here; I will not be reading j and k as envisaged. You got this.

So, how does the architecture support this? Are you getting the problem what I am

saying? So, how does the architecture support this? The architecture says, whenever you

are accessing any data you add whatever is there in the segment register to it. So, what

happens now? Move EAX comma 0; 0 plus 2100 (Refer Time: 28:57). So, move EAX

comma 2100; j is loaded there. Move EBX comma 2104, k is loaded there. Move 2108

comma EAX, correctly EAX goes to max, correct? You are understanding?

So, what does the architecture do here? Architecture will take the address generated by

the compiler and add it to the segment register and then that is what it will be using for

memory access. So, that is the support of architecture to segmentation, as 2 memory

segmentation. You are getting this? Are you understanding this? Without that this

intervention, what will happen? This particular code that I have written on the top will

access something in the operating memory, operating system memory and it will not be

accessing something in the actual memory, you are getting this? Yes or no?

Now, let us go to the next steps. So now, what will happen? Why cannot I put 2100 itself

move EAX comma 2100, move EBX comma 2104? I cannot do it because at the time of

compilation I do not know where the code segment will be loaded, I do not know where

the data segment will be loaded. So, I need to do what? I need to do position independent

compilation. I need to compile assuming that my code will start at 0; my data also will

start with 0 and that how I compile. And after compilation, the segmentation should

ensure that I load wherever I load my program, the correct data should be accessed,

correct? And, it ensures it like this.

So, this is the support of architecture for implementing segmentation, do you understand

this? So, ease of programming essentially from the compiler point of view, it assumes

that it is 0 and leaves everything else to the architecture to manage. So, as you see at all

these places, the addresses 0, 4, 8 will translate to 2100, 2104 in 2108 by the procedure

that we have stated here.

(Refer Slide Time: 31:39)

Now, let us talk about what is; this is ease of programming, right. Otherwise, the

compiler will have, cannot do anything about and specifically in a multi user operating

system. It has to be independent of the location. Now, let us go and see process mobility.

This is the original memory organization, address of j is 2100, k is 2104 and max is

2108. Now, a new process wants to come and it needs 260 bytes of segment. Now, is that

260 bytes large segment here? The vacant space, look at the vacant space there is 200

bytes in the first vacant space on the top and 200 bytes in the next vacant space. So, there

is 400 bytes available and that fellow is asking only for 260, but I cannot allocate it; why

I cannot allocate it? Because, I do not have 216 contiguous locations as you see in the

slides, OK. I do not have 260 in the contiguous location as we see in the slides.

Though I have 400 bytes of vacant memory, I cannot allocate it because you need 260

contiguous junk of memory. So, what I do now? I moved my data segment down. So, this

was how my data segment looked. Please note that, the blue data segment towards at

2100, I moved it down, I just copied the content from 2100 to 2300 to 2301 to 2500; I

just copied it. Once I copied, that is space become vacant and collectively, now how

much bytes I have as vacant? 400 bytes, now I can load my 260 byte data. The moment I

moved this data segment down, then what happens? Where will the new j b is stored? So,

the new the j will be stored at 2300, the k will be stored at 2304 and max will be stored at

2308. Now, when I moved this data segment to 2300, please note that I have also

changed the value of that register also to 2300. Now, when the program is executing, now

what will be the new value of j? It will be 2300, k will be 2304, max will be 2308. So, I

did not change my program, automatically the values of j, k and max got adjusted,

immediately. And, this is possible because of segmentation. Because, every time I do a

memory access I add the base value in the segment register to that. Now, your segment

registers value has changed to 2300 and it takes care, immediately takes care of all the

accesses that we are talking of it, got it.

So, this is what I mean by process mobility. By process mobility, I moved a data segment

and I did not change any program, it still executed without any change. And, why I need

process mobility? I needed because, what we needed because, I need to do occasionally

or sometimes even frequently I need to do something called garbage collection. What

happened here? The 2 vacant space or bit of garbage, right, they do not have any thing,

but this garbage is spread in 2 different space in your address space, each of 200 bytes

and 200 bytes. If they were together then I can load some other program, now any

program which is larger than 200 bytes cannot be loaded here.

Now, I have a program which is 260 bytes. So, now, I do what you call as a garbage

collection and the moment I do that garbage collection please note, that I get enough

space for loading the new program and now, the program is actually loaded and now may

new vacant space becomes 2160 to 2300 as you see here; because new processor of 260

bytes is already loaded here. Now, automatically, your addresses of the variables j, k and

max also changes. So, in this session, so far we have seen about segmentation and paging

and what are the roles and responsibilities of segmentation and paging and we also talked

about some advantages of segmentation in terms of process mobility and you know ease

of programming. So, any doubts in this?

Hardware does not get addresses with the actual addresses, hardware actually gets what

you call as logical address, we will deal when we are doing with segmentation and before

it goes to memory, it is getting added with this segment register to actually find the actual

registers. So, the hardware is in different forms, there is a register, there is a segment

register, there is a normal register and there is memory. So, what goes as an address to the

memory is not just whatever is there in the register value. It is a register plus the segment

registers value base, which goes to the memory for accessing the data. For example, in

the session 6 that last part that we saw sorry, session 7 on the last part we saw. So, 0 is an

address, correct? Which is available with your instruction, but it is not the actual address;

2100 would be the address or 2104 would be the address, which goes to the memory. 0

does not go to the memory at all, 0 is added with the segment base and that is only given

to the memory.

That is completely the responsibility of the architecture. It cannot be the responsibility of

the operating system because it does not know; it does not have direct access to the

segment registers. So, it is completely the responsibility of the architecture to take your 0

and add it with 2100. So, what is role and responsibility of you see here? The role and

responsibility of the compiler is to compile this code, assuming 0 and 4. The

responsibility of the operating system is to give location, give enough space for the

program to store it is code segment and data segment. So, the operating system is

responsible for loading that code segment between 900 to 1900 and the data segment

between 2100-2300; that is a responsibility of the operating system. And then, once the

operating system has loaded it is the responsibility of the hardware, is the responsibility

of the hardware to see that every memory access the segment register base also gets

added; it is a responsibility of the hardware. So, there is an operating system

responsibility, there is a compiler responsibility and there is a hardware responsibility, as

you see in this slide.

