
Information Security - II

Prof. V. Kamakoti

Department of Computer Science and Engineering

Indian Institute of Technology, Madras

Lecture – 33

Lab4 Part 3 - Week 6

(Refer Slide Time: 00:09)

What is line 89? Line 89 is again a call to 0xep. So, this is 0xep8, it is actually the

descriptor so let us go and see what is there in x slash 2x0xd0e8 that is what you wanted.

This is a call gate as you see here type this is a system descriptor call gate of privilege 3.

This descriptor privilege is 3 and it points to a code segment which is 8 and offset there

which is 100. So I need to go to the code segment pointing by 8 and start executing from

an offset 100 from the code segment. And this is what (Refer Time: 01:18) so just get in

this thing what is 0xe8. Actually a 32 bit call gate, this is not the base, this is actually the

code segment selector 8 and then offset is 100.

(Refer Slide Time: 01:21)

What is the code segment 8 here? Let us go and see the code segment 8 is actually

pointing to a000 and I should start executing at a100 here. The call gate essentially says

go and start executing at a100. What is a100? Please note that, this is the align 0x100 so

this is 1100.

(Refer Slide Time: 02:29)

So, when your call gate executes in line 89, it swifts control to line 56, call gate move

control to line 56, it is calling this. And what you do here? Here you mov ax 0x18, so

what is there in 0x18?. So line 56. What is there in slash 2x, you know it is d018 mov

e000, so this is moving into GS base is 0xe000 and limit is 0x100 and you know this is

4092. So this is privilege 0. I am trying to do a privilege 0 activity here. I am in privilege

level 3 and just by using call gate I am now executing a privilege level 0 code.

Actually here your CS is pointing to 8 which is base is 0xa000 and e limit is whatever f f

and e l is 0, call gate offset is 0x100. So I start executing from a100 which is line 56,

please note that this is align to address a100. Now from privilege 3 I have started

executing a privilege 0 code that is what we are saying. Now what type we are doing is?

In e040, so this GS colon, I am moving a b c d, a b c d. So, 0xe040 basically gets a b c d,

a b c d. And then I do a far written because it is a far call. I do a far written, when I do a

far written basically I come to, I go back so this is line number 59. Line 59 mov control

to line number 93 (Refer Time: 06:03). So, at this point also we have been using the

stack pointer 0 for doing this call.

(Refer Slide Time: 06:28)

So when you are doing this call, when I am in a PL 3 segment I need a stack of PL 0.

This is I am just trying to explain you the task switching. I need to have PL 0 and where

will I find a PL 0. So let us go here, your ESP 0 and SS 0. At 4 and 8 I am going to find

what is ESP 0 and SS 0, so let us just see this. At PL 3 your SS, ESP 0 is p304 is 50, ESP

0 is 0x50 and your b308 04. Your stack segment SS 0 is 0x38 and what is0x38?

(Refer Slide Time: 07:46)

Again let us go back to the GDT 0xd038 and c000 base value. This is the stack with base

as 0xc000 limit 0x100 and here 0. So when I do this call gate all that I need for written

etcetera would have essentially been done on this a particular stack. Now, I can check

stack at 0xc000 right c050, 0c050 actually around it for stack switching, because I am

going from a PL 3 code to a PL 0 code. Similarly, also please note that the current stack

for this it is c300 and this stack is at c050 for the current stag of the PL 3 processes is at

c300 and your stack is at c050. It is not using the stack, it is trying to use the stack we

will check this also. I will just put from now on some comma here which is essentially

means I have to check these things, yes this is to prove that I have executed.

Coming back I will be now trying to execute line 93, I am back at line 93. And in line 93

I am moving line 93 to 95 I am moving into EX, ES the thing 0x is e3 0xe3 is e0. So let

us see what is S slash 2x0xd0e0? Please note that this is a privilege 1 segment with c700

as base and 100. There is a PL 1 segment with base as 0xc700 and limit as 0x100. This

obviously creates the general protection fault. What is a general protection fault? It is

number is 13. Now 13 means, it should be stored in 13 into 8 which is 104 which in

hexadecimal is 68. Where is my IDT? IDT is at d210. So I will go and find out x slash

2x0xd210 plus 68 is d278. This says that this is 0088, so this is the 0x88th descriptor and

it is e5, if you see the type it is a system. This is a task switch. Again this trying to do a

task switch using a task state segment descriptor, which is this a task gate. So, essentially

it is trying to do a task switch and using a descriptor at 088. Let us just summarize it

here, so line 95 causes a GPF, so look at d 13th descriptor in IDT located at xd278. IDT

base derives d210. This shows this is a task gate and the TSS is in 0x. Let us see where is

x slash 2x0xd088 and this tells me this is a DSS the TSS is at 0xb400 and limit is 0x, and

note that this has a 32 bit descriptor. Now what happens here, I go and see a b400 is the

task gate, now I have to go and see what is there in b400.

(Refer Slide Time: 14:21)

We have to see what is there in b400, so let us go and see. The same thing that we could

see here, I should say that the interrupt service between isr is a task with PSS at 0xb400.

So let us first go and see where it will start executing, where it will be as x s slash

x0xv420 is where it should start executing. It starts executing at 800. Now, we will see e

i p is 0x800 and your CS which is b44c should give you a c s s slash b44c and it is 8.

What is 8 here? So, CS is again 0x8 so this is nothing but your base is 0xa000 limit is f f

f f andPL is 0. How find out? Just go to x slash x0xd0x sorry s slash x0xd008. This is

a000 and limit is quit (Refer Time: 16:26) fpfff and this is a PL level. Now the intreup

service routine will start executing at a800. And what is the stack x? Let us see the other

segments s slash x b448 this is your ES, ES is null, FS and GS are null. So, we just see

ES, FF and GS are all null. Let us also see what is there in SS. SS is b450 which is c8.

Your SS is 0xc8 and let us see, what does that mean. That is again d0c8. This c400 is a

stack is start at base is c400 and limit is 100 and this is a privilege 0 stack. Your DS is

also very important. Your DS is 18, DS is 0x18.

What is that base for this? S slash 2x0xd018 it is e000 and base is 0xe000, limit is 100

and privilege level is 0. So, now the task state thing will start working. It should start

executing at a800 that is the exception. You have seen several aliens here, so you start

with a000 and you put an align 100 here this is a100, you put align 200 it is a200 then

another 200 a400 another 200 a600 and another 200 say a800. So your code will start

executing here. I am popping EBX from the stack which stack you should be the 0, stack

that is c400. Before going to that let us also find out what is the ESP value, ESP is 0x38

x slash x0xb438. The ESP is set to 50. Now here we have some small issue that we had

found out. There are different V boxes that we are using. The V box is actually assume

letting the (Refer Time: 20:33) machine. Some versions of the V box specifically the

later versions beyond V box 5 and above, they see the moments such type of an

exception comes. Typically a general protection fault there is a error code that is entered

in to the stack.

(Refer Slide Time: 20:57)

In this case, the 0 stack which is currently pointing to c400, ESP is 50 c450 I need to

have the error code. But normally sometimes what is happening in the latest virtual

boxes especially b10, somehow this error code is not going in to the stack. If you use a

(Refer Slide Time: 21:16) previous version error code goes there. Initially we have made

it null, initially the value will be 1990, 0x909090. If the error code is pushed in to the

stack by the v box then this comparisons statement that 19 will be true because if i (Refer

Time: 21:39). If I see, if I pop from the stag pop bbx that I am doing at 117 and I find

that it is null that means, no error code has been pushed by the v bags I go and jmp to

this hack, otherwise what I do, and EBX with.

What will be the error code there? The error code there would be actually the segment

descriptor which is basically the segment selector which actually created the general

protection fault. I know that I will get what will be in EBX here would be the index of

the descriptor that actually created the fault. In this case e3 which is basically e0, e0 is

the one which created the fault, so I will have e0 here. And why I got that fault e0?

Because I am trying to use a privilege 1 segment it should be a privilege 3 segment. So

what will be there in EBX? After this end operation will be e0, if the error code has been

pushed in to the stack. Now what I do I add 2004 to the CBX so 2 to the c3. Basically, I

get this second byte of the descriptor. Now, please note that when I am doing this I am

moving in to ES the value is 0x10. Now you see that ES actually points to b000. What is

there in EBX? It is 20e7. So, what is ES colon EBX? It will be d027, sorry d0e7.

D0e7 is nothing but the second 4 bytes of e3. In this if I am going to change the 14 bit to

1, essentially what I am doing? I am making that privilege level of that segment to 3.

Currently, the privilege level of e3 as you see on the top is 1, by making that 14 bit of the

second 4 bytes of that descriptor 1 what I am converting it I am making it as PL 3.

(Refer Slide Time: 24:57)

So, by making PL 3 then I go and do general protection for it. If I do that, what I am

doing here is I am automatically going to 20e4 because I do not have the error code I go

to automatically 20e4 and set that 14 bit to 1. That is what I am doing in this part of this

code called hack. And then what I do back is I move ax comma 0x18 and push some

budeg in 4 whatever CBX and pushing in to this. So, what is 18 here s slash xd018, this

e000, so DS is already. So GS actually becomes 0x18 which is base is 0xe000 and limit

is 0x100 and PL 0. I am moving to 0xe020, some error go. This can be just 90, 90, 90,

90, 90 or it can be some e0 depending on the virtual box version we are using.

(Refer Slide Time: 26:40)

So I will just repeat what I am trying to do. Once it is DPF comes some virtual boxes

below version 5 actually pushes the error code which should be pushed. The virtual

boxes after version 5, for some reason does not push error code into the stack. So what

we do is, we just pop EBX if that EBX has null value that means, the virtual box has not

pushed error code there the x86 machine (Refer Time: 27:06) is not pushing the error

code so I jmp to hack.

Otherwise what will that error code have, the error code in the case of a GPF is such type

of a segmentation violation will have the value of the segment descriptor. So will use this

segment descriptor that should be e3 and end it with fff8 so essentially I get e0 here to

which I had 2004 I will have 20e7. Now I am using the 10th descriptor which has base as

b000, b000 plus this 20e7 will take me to the second word of the descriptor in which I

am setting the 14 bit to 1. Essentially, I am changing the descriptor e0 from PL 0 to PL 3

and I am done GPF. In the hack since I do not have the error code I directly go and

change that 20e4 with the 14 bit there and that basically works here. So, 20e4 is set here

because of the error code. Normally, this is better because this is more generic, but this is

an adopting that we need to do because some virtual box, do not push the error code. And

then we just go and move to this e020 this debug information what was there in EXB,

was EBX had the null value or did it have the other value.

