
 

 

Information Security – II 

Prof. Kamakoti 

Department of Computer Science and Engineering 

Indian Institute of Technology, Madras 

 

Lecture – 30 

Task Switch recap - Week 6 

 

 

(Refer Slide Time: 00:09) 

 

So welcome back and we go onto the next demo session which will be task switching. 

We discussed task switching in a very broad way in a previous session. Now we will 

have much more better deep understanding of task switching and then followed by one 

code which will be demonstrate this task switching in a full perspectives. 



 

 

(Refer Slide Time: 00:40) 

 

Now, let us see what is the task, task is nothing but a unit of work performed by the 

processor which is to primarily to execute a process or serve some operating system 

utility or handling interrupt or exceptions. So, task can be of three forms; one it can be 

application program executing or it can be a device driver executing or some operating 

system utility that is executing, a scheduler executing etcetera or it can also be in a 

interrupt service routine that is executing. So, there are three different type of task by this 

type of a classifications. So, everything that is executing in the processor is essentially a 

process and that is called a task. So, everything that is executable on the processor 

essentially is a task. 



 

 

(Refer Slide Time: 01:39) 

 

Now, what is task management, and why it is very much important for the information 

security. Now what do we understand the term task management, how hardware handles 

multiple tasks and protections among them, this is the most importance thing that we 

need to look at. So, we have to look at from two perspectives, namely the task execution 

perspective and the task switch perspective. When I am executing in a task, I have 

certain privileges, I do not have certain privileges. When I move from one task to another 

task, I can make the move; I cannot make the move. I can make move from my task to 

some task a, but I may not allowed to move from my task to another task b. So, when we 

talk of task management the main issue is executing task is the programmers problem, 

but when I execute the task what are the privileges that I have what are privileges I do 

not have essentially is the part of task management. And when I complete the task and 

move out the during task I switch to some other task which are the task and supposed to 

switch and which I cannot switch this is also part of the task management. And these two 

conditions basically governed by security. 

Why should I not go to some other task for security reasons, why should I not when I am 

executing, why should not you know access certain routines or access certain objects that 

is again due to privilege reasons or security reasons. So, security basically dictates task 

management from these two perspectives. Again repeating that when I am executing the 



 

 

task what is it I am allow to access and, but I am not allow to access. And from a task, 

which are the other tasks I could switch on and which I cannot switch on. So, if task 

management is not made protected then anybody can access anything else and essentially 

there is nothing call secure data at all and so that is the basic threat to the first and 

probably the largest threat to information security. So, this task management forms a 

hard cracks for information security. Now what will do is how x 8 6 architecture handles 

these both task is execution and task switch is what we will see as a part of this session. 

(Refer Slide Time: 04:39) 

 

Now, what is inside a task, a task has in an execution space. What you mean by an 

execution space, space means some amount of memory in which I carry out my 

execution using which I carry out my executions. So, the memory basically has code it 

has stack and it has one or more data segments that is used by tasks. So, where are these 

information captured like as a task what is the data segment I can use what are the you 

know stack segment I can use etcetera, these are all captured what we call as the task 

state segment. In a task state segment, essentially, I could say that these is a metadata of 

task execution space essentially used to identify the memory location of each segment 

right. So, we have already saw the structure of a task state segment it as hundred and four 

bytes, but I am going to go much deeper into that in this session. So, what will the task 

state segment hold, it hold all details about the tasks and what are those details, one of 



 

 

the most important thing is that it holds the context of the task. What is the context of a 

task, I explain that in the earlier sessions, but I repeat here, it is the basic minimum 

information require for me to restart a tasks after once it gets suspended and this 

information is basically stored in task state segment. 

(Refer Slide Time: 06:16) 

 

Now, this is the basic task structure. There is a task state segment. And in the task state 

segment, you store all the select task to the code segment, to the data segment, to the 

stack segment, to the stack segment of the current privilege level and then you have 

pointers to stack segment of privilege level of 0, 1 and 2, and then you can store your 

LDT - local descriptor table then also you can store what you call as CR 3 which is the 

start space table. As you go into the version of Unix, you will understand that a space 

table every task and have its own space table also, so that is also captured in the task 

state segment. In addition, where will the task state segment start that location is 

basically pointed to directly or indirectly by a task register. So, this is how a task state 

segment looks like, and the task state segment essentially dictates the structure of the 

task. 



 

 

(Refer Slide Time: 07:37) 

 

So, the information essentially has in addition to the segment selectors the current 

segment selector CS, DS, SS, ES, FS and GS, please note that in point number seven in 

your slide you have the LDTR, it essentially has pointer to its current LDT. So, all the 

segment associated with the stack is basically captured through that LDT, it also stores at 

the time of suspension, whatever was where the current values of current selectors that is 

stored in CS, DS, SS, ES, FS and GS, that also it captures exclusively. In addition, s it 

store a value of the all the general purpose registers EAX, EBX, ECX, ESI, ESP all the 

eight general purpose registers sorry, there are only four, totally eight, eight of them these 

are also stored at the time of suspension that values stored. At the time of suspension, 

whatever is the value of e flags that is also stored. At the time of suspension, whatever 

the value of EIP - extended instruction pointer that is also stored. 

Then the physical address of the page directory used by the task because each can have 

its own page directory as I mentioned here that is also stored there. And the task register 

value that is load for the task register values, you can also store that and then the stack 

pointers of PL 0, PL 1, PL 2 stacks and the actually the selectors of SS 0, SS 1, SS 2, SS 

3, all these things are SS 2, all selectors for these different stacks are also stored. And 

then there is also link to previous executer task which you can use for task switch 

purposes. 



 

 

(Refer Slide Time: 09:39) 

 

So, to sum up the data structures that need for a task switching, there two ways I jump or 

call directly to a TSS descriptor. And immediately there will be a task switch because the 

TSS descriptor will pointed task state segment; and in the task state segment, there will 

be a EIP. So, whichever task state segment that is TSS descriptor points to I jump to the 

that task. So, that is method one. Another way is, I go through a task gate and from there 

task gate I go to the TSS descriptor and then I go to the task state segment and I get the 

new address and start executing. So, there are two methods by which I can do task 

switching. So, the method one, involves a task register that directly points to the TSS 

descriptor and the TSS descriptor is a descriptor for the TSS and that will point to the 

TSS and I get a EIP which is a next instructions to be executed. In the method two, I go 

to the task gate descriptor which is indirect task protect pointer to the TSS descriptor and 

from there I go to the TSS descriptor and from there I go to the task state segment. So, 

these two methods do exists; well, the second method is introduced to get more security 

for than the first method. 

And there is one thing called nested task flag - NT flag in the extend flags register which 

actually controls the chaining of interrupted and call tasks. So, one task call another task 

automatically that NT flag becomes one. When one task essentially gets an interrupt and 

by that it goes to the interrupted task, then NT flag is basically set to one. Why is NT flag 



 

 

set to one, if I do a jump which is not set a one, because there is no way by which going 

to return back; but if I do a call, then I will return back. So, this is why the NT flag 

basically tells is there a task switch that will gives out a possibility of going back to the 

original task at all; if that possibility is exists then your NT flag is set to one otherwise 

NT flag is set to zero. So, this is something which has being you know followed by the x 

86 architecture. 

(Refer Slide Time: 12:13) 

 

So, this is method one for task switching. So, there is a task register which will which 

stores a selector that selector points to a TSS descriptor inside the GDT. Please note that 

TSS descriptors can be stored only in the GDT. Now this TSS descriptor has a base 

address and the segment limit. So, the moment I stored, when I load LTR with that 

selector value the base address and the limit goes into the invisible part, why I do that for 

performance reason. Yesterday, we also saw in the segmentation that there is always a 

hidden part, and the data goes stays in the hidden part, the limit base and the privilege 

level goes and stays there. So, here the base address and limit goes to an invisible part 

and based on that now this how a TSS is basically defined and stored. So, now, the TSS 

has two components as I see, the visible is the software controlled part which 16 bit 

segment selector, and what does segment will select, it will selected TSS descriptor. And 

there is a invisible part which is controlled part which has 32 bit base, 16 bit limit and 



 

 

descriptor attributes for TSS descriptor right. So, there are some caching purpose 

etcetera. So, all this things are invisible part. Why I need that invisible part as 

programmer I do not really care about that invisible part, but why I need that because for 

performance reason. 

So, if I go and change something in that TSS, I need to go and do again in LTR - load the 

task register to see that those thing becomes effective, you got this. If I go and change 

something in the TSS descriptor have to do in LTR again, so that the hidden parts get 

updated. So, this is very similar to what we are seen in yesterday’s lecture right. If I go 

and change a segment descriptor base address, unless I load the selector again into the 

corresponding segment register that change will not be effected, because the base limit 

etcetera are stored in the hidden part and there is no way by which I could link this 

hidden part to the actual memory locations. So, when I go and change the memory 

location, it is the duty of the compiler to generate a code which will again move, once I 

change that it will again come and move the corresponding selector inside, so that we 

start execute it. So, this is very, very important. 

Now there are instructions like LTR and STR which load task register will load the 

visible part that is given by the programmer and the invisible portion is given by the TSS 

descriptor. Similarly, STR will store the visible portion into the some GPR some general 

purpose memory or general-purpose register or memory. So, both of this are possible 

here. 



 

 

(Refer Slide Time: 15:40) 

 

So, we actually saw about the TSS descriptor. Now let us now look at this TSS descriptor 

in great detail. So, TSS descriptor is pretty simple it has base address of 32 bits as you 

see in the lower part of the slide; it is between the 0 to 32. And then there is segment 

limit which is again 20 bits, it is like any other descriptor. And the type is 1 0 B 1 that B 

is available bit and basically do not care and then P the present bit and DPL is there then 

there is available there is a G bit. So, B bit is basically the busy flag weather the task is 

busy or task is currently running or is suspended. So, this is basically as far as the user is 

concerned, it is a do not care you can fill it whatever you want, the system will be update 

this B bit accordingly. Now what we need to get here is in the TSS descriptor there is 

already DPL. And very slowly we are trying to build up a security; we have to extremely 

carefully understanding this security because this is the crucial thing about you know 

transitions, because all vulnerable thief at all that could come these this should come in 

these type transitions. 

Now there is a DPL here in this TSS descriptor. So, if some other code wants to use this 

descriptor to do a task switch that CPL should be less than or equal to this DPL. So, there 

is one first level check that is made. So, as an operating system, I can put the TSS 

descriptor only in the GDT, I cannot in the LDT. And once if I put in the GDT, there also 

as an operating system can set a privilege level so that only some privilege code can 



 

 

access I could have a control that and that is very important for us to realize. 

(Refer Slide Time: 18:08) 

 

Now, this is the actual task state segment that is at 104 bytes that we seen yesterday, and 

all that we described here is still here in this in this diagram on your left side. And you 

have place holders for all the six segment registers, you have LDT segment selector that 

is for every process can have its own LDT you have a place holder for all the eight 

general purpose registers EAX to ESI, EDI. Then you have E flags which is also the flag 

at the time of suspension what would be the suspension of the task what would be the 

value of the flags. You have EIP which is the instruction pointer. Then we have CR3 

which is the page directory ah base register. So, you can have your own page for every 

task. And then you have SS2, SS1, SS0 which are the segment selector for this stacks 

then ESP2, ESP1, ESP 0 which are the you know stack pointers. And then you have also 

a link for previous task. 

If a task A calls task B then the task A thing is link to task B. So, there will be a link from 

task B to task A, because after you finish executing task B and you do return then it has 

to go back to task A. So, this in operating system terminology, this can be viewed as a 

process control block or a context of the process. And this is essentially necessary for me 

to restart the process after once it is suspended I have to get back. Where it will restart, 



 

 

please note that 32 byte here is EIP, and it will restart at that instruction pointer the 

address stored at EIP. So, this how the task state segment is conceived off and you see 

that there are lot of black or gray areas and those things are undefined and they are they 

are reserved. So, you can put any do not care value when you are building this task state 

segment. 

Now let us take a very quick view here that when the operating system wants to execute 

a task you always seen in the text books that you create a task. What it means to create a 

task, there to create a task which you going to do as a part of assignment. To create a task 

what we do, we create the data segment, the stack segment, code segment, their LDT, 

their page table if necessary then we initialize all the registers, then we initialize C flags, 

we load the programs say, now we loaded in the previous session we loaded the program 

in a thousand. So, we also load the program somewhere and that starting point you store 

in that EIP, then create stacks for the different privilege levels put everything and now go 

and task switch into this TSS. This is what we mean by operating system creating a 

process. So, the operating system creates the TSS fills it with the correct entries and then 

it transfers control to the task state segment; it jumps into the task state segment or it 

calls the task state segment, so that it start executing and when the task returns, it will 

come back to the operating system. You got this, so this is how, this is what we mean by 

creating a task from an operating system prospective. 

And what things can go wrong here, for example, if your CS-code selector has privilege 

two, your SS should also have privilege two. So, things like that can go on. For example, 

if your CS has privilege one and but your SS has privilege zero or your DS has privilege 

zero then it will not allowed to hold. So, when the task switch is happening, the 

architecture checks all these things before it allows the task switch right. For every 

segment selector it will go and check if the first it will load the code segment right, so 

then now the current privilege level is set, based on that it will check for all the other 

segments whether certain segment can go or not. So, there is lot of architectural level 

checks that happens before you do a task switching. So, even if the operating system 

makes a mistake, if you fix the code segment correctly, all the other things will 

essentially be privileges at least at the privilege level all those checks will be done by the 

architecture. We are going to describe those steps in a very quick way as you progress in 



 

 

this lecture, but please note that this check essentially adds lot more confidence to task 

switching. And if we call that this is one of the most important architectural aid for 

security. So, the TSS descriptor is a segment… 

(Refer Slide Time: 23:44) 

 

So, there is also some small things like there is a T bit at the hundred byte; if this T bit is 

set then it will raise debug exception when the task switch occurs from the task right. So, 

when I move from this task to another task, and this T bit is set to one then it will raise 

the debug exception, debug exception is exception number two or exception number 

three one of those. So, it will aromatically go to that service. So, whenever the task is 

switching, I know that it is switching right. So, this is another small feature that is 

available as a part of task state segment. 



 

 

(Refer Slide Time: 24:35) 

 

Now, the other way of accessing or going to another task is through a task gate to a TSS 

descriptor to a TSS. The first method was directly to the TSS descriptor to the task state 

segment. The second method is I go through a task gate to a TSS descriptor to the task 

segment. So, why do you need this, can anybody tell me why do you need this? 

Student: ((Refer Time: 25:22)) 

Student: ((Refer Time: 25:26)) 

So, I can do it at the TSS descriptor level. If you say, I can make it more secure then I 

can make it happen in the TSS descriptor stage itself. 

Student: But in this segment always ((Refer Time: 25:38)) flag of which process is 

((Refer Time: 25:42)) 

No, the reason is that task gate is like a call gate right. So, please note that if I, so let us 

take this scenario, I have three privilege level, three codes A, B and C. I want A alone to 

jump to some task, B and C should not jump to the task. If I want to permit A to jump to 

the task using only the TSS descriptor, what will happen, I have to put the TSS descriptor 



 

 

where in the I can only put TSS descriptor in the GDT; and in the GDT, I have to create a 

privilege level three. Now if I create privilege level three there then all these fellows can 

access that, but I want only A to access not B and C. So, what I do, I make it privilege 

level zero, by put another gate there which point to that right and that gate I make it 

privilege level three. So, I can go through that gate through this task gate through the 

TSS descriptor and then basically go and do the task switch. And this gate, I can put it in 

the LDT. 

So for process A alone I will put a task gate in its LDT which will point to task stage 

segment descriptor in the GDT and it can go there. And for the but the task stage 

descriptor will have privilege zero, so I will go only through the task gate. While for the 

other two, I will not put the task gate there in their LDTs. So, they cannot access, but I 

can still access right. So, there is something like many point of time, you will have 

certain objects which you want only certain people of a privilege level to use, I do not 

want everybody in a particular privilege level to use me. I want to classify that subset of 

people who need to come and use me, correct. I do not want every privilege level three to 

come and use me, but I want one fellow to use me correct. And to achieve this, I use the 

notion of this task gate right. So, I make myself PL 0. So, no PL 3 fellow can jump to 

me, but for one fellow who wants to access me for that person alone I will give a task 

gate in its LDT, so that he can use that to access me, but other fellows cannot access. So, 

this is very, very important. 

So, the structure of the task gate is there is a TSS segment selector here, there is a present 

bit DPL 0 0 1 0 1, this is five, this is a type and this is a system descriptor. So, it is zero 

present DPL and I just have TSS segment selector. So, the task gate descriptor is very, 

very simple to see. So, the thing is my CPL or RPL of the calling task gate selector 

should be less than or equal to the DPL of the task gate. So, when I am calling the task 

gate, I say I jump to the task gate my CPL should be less than or equal to DPL of task 

gate; if that is done that is enough then there is no more check right. So, this is how this 

works. 



 

 

(Refer Slide Time: 30:04) 

 

So, this is the LDT, IDT, so the task gates can be in LDT and IDTs, for example IDT also 

yesterday I told there are instances where I cannot use a interrupt gate or a trap gate, I 

need to use a task gate actually I need to do a context switch for solving certain interrupt 

related routines. Why should I do that we took the case of the double fault. A privilege 

level zero code creating a stack fault having a stack fault, and it tries to push more things 

in to the stack and that creates a double fault. In one of the sessions, I also clearly 

explained a difference between double fault and a fault got when executing interrupt 

service routine, so that is very these are something that we need to very carefully 

understand. So, the IDT will also have a task gate, your LDT will also have a task gate, 

and this task gate will go to the TSS descriptor, your GDT can also have a task gate and 

then it can go to a TSS descriptor, and this is a TSS. 



 

 

(Refer Slide Time: 31:12) 

 

And note that there is a nested flag NT flag in the EFLAG resister, this is the fourteenth 

flag of EFLAG register. So, what will happen is there is if I am going to do a task switch 

for example, there is a caller task which is going to call another TSS descriptor through a 

call instruction or it can come through a interrupt or exception, the moment I call a task 

state segment selector or a task gate either through interrupt or through normal calls or 

any exceptions, immediately I go and set the NT flag. What do you mean by NT flag, NT 

flag for called task essentially; that means that, if my task finishes, there is somebody 

else that I need to transfer control it is not that it is completely over. Because I have been 

this task switch has happened because of a call. So, when I finish then I have to return 

back to the caller, I need to get that captured, so this NT flag is basically done. So, the 

IRET actually modifies this flag on return from the call task. So, caller task calls task and 

the call task finish finishes its work, and it is comes back to the caller task while it is 

coming back it will reset the NT flag because there is no more nesting. I called you, so 

there was a nesting; when I come back, I lose the nesting. 



 

 

(Refer Slide Time: 32:56) 

 

So, what are the types of task switching. So, there is a caller task, and there is a called 

task. So, jump or call instruction to TSS descriptor in GDT is one way of task switching 

jump or call instruction to task gate descriptor in GDT or LDT this is another way of task 

switching. There can be a interrupt or exception vector in the IDT in your interrupt 

descriptor table, I have something called interrupt gate, I have something called the task 

gate. Now I could have I have a trap gate or a task gate. If it is going to be a task gate 

then there is a task switching. So, because of these three instances, I could have a task 

switch between a caller task and called task. From the called task to the caller task, you 

basically go back using an IRET instruction. So, IRET instruction will take you from the 

call task back to the caller task NT flag is set right. The nested caller task should be set 

because NT flag essentially says that somebody has called you, so we go back to this. 



 

 

(Refer Slide Time: 34:14) 

 

So, what are the stages in this task switching. So, I am repeating its quiet I have been 

covering this again for this is third time I am covering this, but every time I am slowly 

going into depth, because first teach you the complete depth it actually drives you mad. 

So, let me slowly go into a little more depth into what happens when we want to do a 

task switch. First I say call some segment selector colon dummy, because that segment 

selector can be a task a pointer to a task gate or it can be a pointer to a task state segment 

descriptor. So, get the segment selector from calls slash jump for example, if I say jump 

0x79:0, this is essentially means the TSS segment selector 79 sorry it is not 78, 79. So, 

for IRET instruction from the previous task link field of TCS you get this. So, if I do an 

IRET, it is also a return from the task it is also a task switch. So, what happens I 

returning from a particular task to another task. So, I have a link as I told you in the 

previous slides there is a previous task link you see on your left hand side. So, I use that 

previous task link to the go to the previous task state segment and there I reset the NT 

flag, and I actually get the field of TSS from the previous task link. So, this is how I do a 

IRET. 



 

 

(Refer Slide Time: 36:06) 

 

So, then after doing this, I go and check the privilege; now I am going to go from 

something, now, let me say that I am going to go to 0x79. Now what is the 0x79, it can 

be a TSS descriptor or it can be a task gate then only the task switch going to happen. So, 

if it is a TSS descriptor, go and see if the current privilege level of the caller task that is 

the fellow who has executed jump 0x79 and RPL of segment selector. 0x79 will have an 

request privilege level, the max of that is it less than or equal to the DPL of the TSS 

descriptor. If it is less than or equal to the DPL of CSS descriptor ok now we can go 

ahead and do the change. 

Now on the other hand, if we say, if you want to go through a task gate again you do the 

same thing you compare the CPL of the caller task and RPL of the segment selector of 

called task ah is less than or equal to DPL of task gate being referred. So, what you mean 

by RPL, I say no jump 0x79 that has an RPL; the 0x79 is a task state segment descriptor 

of or a task gate of the called task right. So, if that max of RPL comma CPL, it is less 

than or equal to DPL then I permit; so this is one privilege that I make here. And please 

note that privilege level does not inherit from caller or called task. Each task separate 

privilege level is maintained in hardware right I cannot say, so task of privilege level 

three calls another task, it is not that also will not become privilege three unless it is a 

confirming code segment right. So, every task has its own privilege level and we 



 

 

maintain it. 

(Refer Slide Time: 38:17) 

 

Now, I go and check other information, for example, the TSS is it present in the memory, 

s, that is a present bit for the TSS descriptor, I go and set it is present. Then if it is 

present, then if the caller task TSS, called task TSS, and all segment descriptor used in 

the task switch are paged into system memory. Why, because my caller task TSS should 

be now gone into memory my call task TSS should be loaded from the memory into the 

registers and all segment descriptors used in the task switch or all paged into system 

memory. 



 

 

(Refer Slide Time: 39:02) 

 

After doing this what is happening here the set up flags we have to set up flags for caller 

task. So, the busy flag B in the DSS descriptor is set to one if it is initiated by call. And if 

it is initiated by jump or IRET it is set to 0. For example, I am a caller routine, I call 

somebody that means, still he finishes I cannot execute, so I am busy correct. But if I am 

just jumping to somebody I am no more busy, because I have gone there and he may 

come back or not, so I am not busy. But if I call somebody till he finishes I am still busy, 

so that that is the notion of. If I initiate by busy, we initiate it by jump or IRET then the 

busy bit 0, but if I initiating it by a call then the busy bit is 1. Similarly nested task if it is 

initiated by IRET it means a return that means, a nesting is over, NT is 0. If it is initiated 

by a call slash jump, your nested task can become 1. 



 

 

(Refer Slide Time: 40:16) 

 

Then what we do is we save the context of the caller task. So, we obtain the case address 

of caller TSS descriptor from TR and copy all the task state information into that TSS 

because TR will point to the selector with base limit etcetera where the TSS is stored. So, 

through task register I can find out where the TSS is stored. So, you go and load 

everything into the TSS descriptor. All caller task data is loaded into its TSS descriptor. 

Then for the called task, if it is initiated by a call or jump or IRET, I become B equal to 

1, because now I start executing, I am the called task, I may be the interrupt service 

routine or I can be another switch task. But and nested task in EFLAGS, if it is initiated 

by IRET and jump NT is equal to NT flag value from called task TSS, if it is initiated by 

call then NT equal to one right. 

So, if I initiated by jump then my what is the NT it is the NT flag of my fellow who is 

jumping into me. If I am initiated by call, my NT is 1. If I am initiated by jump, why 

should I be the NT flag of my NT flag should be the NT flag of who jumped me, because 

please note that there might be a call to a routine, and he may jump and that fellow may 

also jump and somewhere I will go and return my call, followed. So, there can be a jump 

inside a routine, but somewhere I will go and return it back. So, when a particular caller 

jump into a particular another caller which is the another called task, the NT of the called 

task should be equal to the NT of the caller task, because it can be part of some basic 



 

 

call, but I am doing intermediate jumps, but there is still a call there. So, this is also very 

important. 

(Refer Slide Time: 42:39) 

 

Now, I will load the context of the called task from TSS. First I load that that TR to point 

to the new segment selector; the TR old segment is over, now new segment selector. I 

load the task and information from that new segment selector into the corresponding 

registers etcetera, and load and qualify all the segments. Importantly, I qualify all the 

segments right. Because if I am privilege level three code current privilege my code 

segment is privilege two and my data segment is privilege zero, then I do not allow 

loading it right, because if I am three, I can only access privilege three from PAPL to I 

can only access PL 2 and 3. So, if my code segment has a privilege in the task state 

segment if my code segment as privilege 1, it will not allow me to load PL 0 as a data 

segment. 



 

 

(Refer Slide Time: 43:36) 

 

After task switch, the called task will start resuming if there is no error so far; otherwise, 

it will create an error or exception if a depending upon what issue is. 

(Refer Slide Time: 43:49) 

 

So, this is how, so there could be a top-level task which was calling another task, which 

called another task, which called another task. So, that current task register will actually 



 

 

point to the previous task link, which are essentially points to a previous task link and 

like this. So, I will have when I do a nested of calls, I actually create several TSS in a list. 

So, in the operating system terminology, there is a process control block right, there is 

something called a process control block, and this process control blocks are all part of a 

list and they can be in ready list or they can be in the wait list or they can be in the 

suspended list right. So, how do you form such list, this is how the such type list can be 

formed using hardware. Many of the OS does not use it, but still you can use it. 


