
Information Security - II 

Prof. V. Kamakoti 

Department of Computer Science and Engineering 

Indian Institute of Technology, Madras 

 

Lecture - 27 

Memory Management 

 

We had seen Paging yesterday. We will just do a very quick exercise on Paging in the 

next 20 minutes. I will just give you a very quick overview. We have covered this in 

detail yesterday. 

(Refer Slide Time: 00:22) 

 

So, there is segmentation, before segmentation there is something called a Logical 

Address, which is generated by the compiler. When the compiler compiles a code, it 

assumes that the code segment starts at 0, it assumes the data segment starts at 0, it 

assumes that the stack segment starts at 0. When you load these segments, you update the 

segment register with the base address. Every time a data is accessed or a code is 

accessed or a stack is pushed or popped, it is with respect to that base address, so this 

ensures mobility. The address generated by the compiler is called Logical Address and 

that when you add to this segment base, it becomes a Linear Address. That linear address 



directly maps on to the address in the memory, if no paging is enabled. If paging is 

enabled, it does go through a translation before you get into the Physical Address. 

(Refer Slide Time: 01:25) 

 

Now, this clearly explains what is segmentation? When I add a logical address that is 

generated by the compiler to the address given by the segment to the base of the 

segment, I basically generate and address in the logical address space, in the linear 

address space. Linear address space is that is not 0 follows 1, 1 follows 0, 2 follows 1 

etcetera. So, I now get an effective address this is called an Effective Address. Effective 

address or linear address is nothing but your logical address generated by the compiler 

plus the segment base. Now you get a 32-bit address and what you do, you split it as 10, 

10, 10, 12 each. 



(Refer Slide Time: 02:13) 

. 

Your entire memory is divided into, physical memory is divided into page frames of size 

4096 bytes, which essentially needs 12 bits for addressing and your entire logical address 

space is split into pages of size, again 4096 bytes which each requires 12 bits of 

addressing. So, you split the entire 32-bit address into 20, 20, and 12. So with 10, 10 and 

12 and the first 10 bits, you index into the page directory whose base is given by CR3. 

Then that will give you an entry for the page table, the base for a page table and if that 

entry is valid that means a page table actually exist. Now, you go to that page table you 

use another 10 bits to basically index into that page table that will give you the starting 

address of a page. To that starting address of the page, you put this 12 bit offset to get an 

actual value of the page. So this is how we are doing it and we have already seen how 

this will work. 



(Refer Slide Time: 03:30) 

 

Now, please note that by default in the protected mode, you have segmentation. You 

cannot get away from segmentation but paging is optional. So, once you come into the 

segmentation, once you start the protected mode, which essentially has segmentation, 

you can go and set the 31st bit of CR0, the control is the 0 and then immediately paging 

will be enabled. But before you enable paging, you have to go and set up the page tables 

everything properly. If you do not enable the page table because the moment paging is 

enabled, every address including your access to code, the next instruction that you are 

going to access that address of the next instruction essentially will gets translated. So, 

before you enable paging, you should go and set up everything properly that coat-uncoat 

properly is what we are going to see. 

There are some very good important subtle points that we need to follow, when you want 

that properly. So, you set all those things properly and then you start, you enable this 

paging, what do you mean by enabling paging? It is not rocket science, just go to 1 bit in 

CR0 and make it 1. But note that you can enable paging, only the privilege 0 code can 

enable paging, why should privilege 0 code, enable paging? Because, the privileged 

instruction moving into or out of the control register is a privileged instruction. So, only 

PL0 code can enable paging. Then there are 2 things that we can do here there is 

something called page size extension. So in the bit 4 of the CR register, if we go and set 



1 flag as 1 then if it is flag is 0 then the page size is interpreted as 1 byte that is if I 

interpreted as 4096 bytes or 4 kilo byte. When I make it as 1 then this is interpreted as 4 

mega byte pages. Now, 2 megabyte or 4 megabyte pages and whether it is 2 mega byte or 

4 megabyte actually depends upon the PAE bit which is actually the 5th bit of your CR4 

register. So, if your 4th bit is 0 of the CR4 then it is 4 KB byte. If your 4th bit is 1, let us 

call VSC bit page size extension bit is 1 then you go to the 5th bit, if that 5th bit is 0 then 

it is each page is 2 megabyte in size. If your 5th bit is 1, then each bit becomes 4 

megabyte in size. 

You could have small pages, large pages and medium pages, but this 4 KB to 2 MB is a 

big deal and then 2 MB to 4 MB is again doubly. So, you do not actually get good 

granularity when we start looking at paging. But note that, at paging from a security 

point of view, we have already seen the page table entry as you see here. 

(Refer Slide Time: 06:50) 

 

There is U bar S bit, which is the bit number 2 and there, if you put U it has 2. Then 

basically you can set that bit or reset that bit. Basically, you can allow PL0 code alone to 

go or any code to go. It is a user slash supervisor bit that we can we can handle there. 

Similarly, this is true with your page directory that is the first level paging which use the 

top 10 bits of your 32 address to index into and this is also true for all the second level 



page tables where use the second 10 bits to index into it. And the last but one 

architectural concept before we go into the assignment is that, we have something called 

translation look a side buffer because when I want to access something in the memory 

for paging, I have to go to page directory that is a memory read. From there I have to go 

to page table that is another memory read. From there I have to go to the actual page in 

the memory and then read. So every memory read now becomes 3 memory reads.  

In the case of segmentation, it was 2 memory reads and we solved by having a hidden 

path there. Now, in case of paging it now becomes 3 memory reads. So 2 of the memory 

reads are done for translation purpose that is your converting your effective address to a 

physical address. The address got after segmentation to a physical address 2 memory 

reads were dedicated or used for doing this translation and the next memory read is 

basically to get the actual value from memory. To stop this 2 additional or minimize 

these 2 additional accesses to the memory, we use something called the translation look a 

side buffer, which is nothing but fully associative cash that is staying inside your 

processor. So, if your page is already translated, you need not go and translate it again. 

All the recently translated page addresses are stored in your TLB. 

So, when you generate a page address, what is the page, the first 20 bits gives you the 

page address the remaining 12 gives you the offset within that page. First you go and ask 

the TLB is this entry translated and available with you, if the TLB says yes use it, if the 

TLB says no then you do the translation. And then if you look at you know principle of 

locality of reference and special and temporal localities, this TLB will essentially lead to 

lot of performance benefit, which is actually in practical scenario we see that 

improvement in performance, significantly large improvement in performance because 

the page translations are not going through every time but once in a while. This is again a 

gist of paging; I have covered paging in the previous sessions much in detail. 



(Refer Slide Time: 09:56) 

 

But before we go through the assignment, we are just getting into some details so that we 

recap those concepts that we had covered in the various sessions. 

Now we will move into assignment, but what primarily we are going to do in the 

assignment to the actual program which will demonstrate paging for you on the x86 

machine. We are going to do two things there, one thing is what it means to set up before 

we switched paging, what do mean by proper setting up and then we will demonstrate 

paging by saying that we will jump to a very far location but at will be my next location, 

so the translation will take care that it becomes the next location. That is one step that we 

will do and the next thing that we will do is a very, very simple thing like we will go and 

make a particular page not available and then we will make it 0 and then we will try to 

go and we will demonstrate a page fault, that such a page is not available how a page 

fault we will show that how it is going to the page fault handler. This will give you a 

broad spectrum of this. So, with this as the background I will just open it for a 2 or 3 

minutes of doubts and then we immediately go into the code.  


