
Information Security - II

Prof. V. Kamakoti

Department of Computer Science and Engineering

Indian Institute of Technology, Madras

Lecture - 24

Interrupt Service Routines

 Good afternoon all of you, and welcome to this session. We now proceed to what we

term as Interrupt Service Routines. And, so, in this session, we will cover interrupt

service routines, a little more deep-dive than what I gave, talked in the previous sessions.

And then, we will also give you some examples; we will run the code and show you,

how interrupt service routine works. Please be ready with your laptops, so that, as and

when I give certain instructions, you can basically follow, and see the execution for

yourself. Now, very quickly, what are interrupts?

(Refer Slide Time: 01:08)

Actually, interrupts are driven either by software or they are driven by hardware. So, the

hardware interrupts are those that come from the external world; for example, a keyboard

interrupt is a hardware interrupt; a device interrupt which comes through the external

interrupt pins to the processor are hardware interrupts. There is also software interrupts,

which are basically, these interrupts come into place, because of certain problems with

your software. So, like, divide by zero; this basically creates an interrupt. So, there is a

terminology that is followed, between what is the difference between an interrupt, a trap,

exception. But, as I mentioned yesterday, for this course purpose, we will have one

exception, as they, as the word for exceptional behavior, and if that is caused by the

program, then it is a trap; when it is caused external to the program, it is an interrupt.

So, what happens when an interrupt comes up? The current program that is executing

gets suspended, and the interrupt service routine takes over; it executes, then, it shall see

whether it can return back the control to the program. For example, if you have a divide

by zero, it will never return it back to you. If you are having a segment overflow, it gives

you a seg fault and never returns back to you; but, if there are some other small, small

things, for which it can return, back to you. And so, the interrupt service routine does the

service, and it decides, whether it can return back to you or not and based on that, it will

return, or it will terminate your program.

(Refer Slide Time: 02:57)

So, this is how the whole thing works. So, currently, there is a process running; that is

what you see on the left hand side and there is an interrupt. If there is an interrupt then,

the interrupt routine service goes to the CPU, while the program goes to a suspended

state. Then, after the interrupt service routine finishes, the program again comes back to

the running state, if the need be, the interrupt service routine again goes back to the

memory. So, this is how the interaction between a program and the associated interrupt

service routine, which needs to be executed, when an interrupt is caused, when the

program is executing.

(Refer Slide Time: 03:42)

So, what are the importances of interrupts? Without interrupt, nothing can happen. So,

you cannot, for example, no external hardware device can communicate; that is a most

important thing and the external devices communicate in an asynchronous fashion, so

that is also very, very important. Asynchronous in the sense that, the CPU has a clock; it

is not necessary that, my interrupt has to come exactly at the clock, raising edge of the

clock. It can be any time, any point of time.

For example, the scheduler cannot perform preemptive scheduling. Yesterday, we were

talking about round-robin scheduling. So, when a process is executing and there is only

one CPU, the processor actually executes on that CPU; when the processor actually

executes on that CPU, process executes on that CPU, how will it be pulled out after a

particular time quantum? The operating system cannot pull it out; why, because the

operating system is also software and it needs to execute to pull it out. The operating

system cannot pull it out, because it is not executing. So, who will pull it out? There will

be timer that is set by the operating system before giving control to the process and that

timer will give an interrupt and pull this process out. So, this is very, very important, that

also is caused because of an interrupt.

Software may not be able to perform any privileged operations because if I am a user

level privilege level 3 operation, and I want to do something, for example, I want to print

on the screen, or I want to go access the disk, all those things have happened, happens

through a much more privileged code; for example, a device driver, which is much more,

which has higher privilege than the normal application code. And, how will I switch on

to a device driver? It is happening because of an interrupt. If I do not have the interrupt, I

cannot basically go and switch to a higher privileged code. And, more importantly,

software may not able to recover from run time errors.

When there is a run time error, today, interrupt is the one which will service, and see that,

if that run time error can be salvaged, salvageable, then it will salvage it, and then, give

back control to the program. And, the operating system may not be able to perform

demand paging. Today, when we use virtual memory, when a page, when I go and try to

access address, the page corresponding to that address is not there, then, in the memory,

then immediately, an interrupt is raised. Similarly, all your privilege checking, from a

security point of view, everything depends upon the interrupt. If you do not have these

operations, if you do not have interrupts, many of these cannot be achieved. Actually, a

system cannot be built without interrupts. So, interrupt is a very, very important thing

that we need to keep in mind.

(Refer Slide Time: 06:50)

So, some of the manuals actually has, does not have a notion of a trap, but they have

interrupt process exceptions. And, why I am basically covering these things are, that,

when you, when you actually start reading multiple books, then, you will have some

varying terminology; first and foremost, you should understand that, that variance exists

and this is one variation. So, this is from the Intel manual.

Interrupts are asynchronous events, intended to shift the focus of the CPU towards a

different process. It can occur before the start, during the execution, or after the

execution of an instruction. So, I as a processor, I am executing an instruction; an

interrupt can happen before I start executing it, while I am executing it, and after I

execute it, right. And then, what happens, there is a shift of focus from the current

process, and it will go through, go to the interrupt service routine. For example, timer

interrupts, and request to service hardware device. So, these are all some of the

asynchronous, or interrupts that we call. These are all some of the events that we call as

interrupts.

On the other hand, there is something called exceptions. Exceptions occur, when the

processor detects an error, when executing a particular instruction, right. So, whatever is

happening inside the processor, there was some error that happens while executing the

instruction and then an exception is caused. So, anything that come external to the

processor, we call it as interrupt; anything that happens internal to the processor, we call

it as an exception. So, this is another way of looking at interrupt and exception. This is

another way by which books define interrupt and exception.

So, there are different types of interrupts. Some interrupts can be hardware generated;

some interrupts can be software generated, right. So, interrupts are not because of some

instruction executing wrongly. If an instruction is executing wrongly, then it is called an

exception. Now, what is hardware generated interrupt? Interrupt from printer, keyboard,

mouse, etcetera. These all come through in the Intel architecture as something called a

LAPIC, which is actually a programmable interrupt controller. And, this programmable

interrupt controller is, will be responsible for bringing the interrupt from the device on to

the processor. But sometimes, you also generate interrupts by software.

If you had carefully looked at the code that we covered in the last session, one of the

lines in that code has INT 3. So, it is actually a software generated interrupts; and that is

not because of an error in the program that the program voluntarily executes INT 3, to

get into the interrupt service routine given by 3. So, for example, INT 64, which can

invoke a custom ISR, an interrupt service routine written by the user. So, I can have, as I

told you, we could have our own customized interrupt service routine for each of this

interrupts, and we can handle it in the way we want it to be done.

(Refer Slide Time: 10:18)

Now, there are 3 types of, you know, events that could happen, and that, specifically

exceptions; that is, when I am executing an instruction, there are three ways by which an

error could happen. One is a recoverable error, recoverable event, that is, I do something

wrong, but I can recover; and, the interrupt service routine will help you recover that,

and this is actually called a fault. For example, page fault. I try to access a page; it is not

actually available; then, what do I do? I do an, I go and get that page into the memory,

and then, execute the same instruction again. So, page fault is something that is

recoverable.

A trap is actually a recoverable exception, which ISR takes corrective action. The

instruction that caused the trap is ignored, and the program execution continues from the

next instruction. In a page fault, I am trying to access some data; it is not available. So,

the page is loaded, and again, I restart the same instruction. In a trap, I restart from the

next instruction; I ignore this instruction that caused a trap. Then, abort is something that

happens when there is an irrecoverable error. For example, there could be a hardware

error; there could be a divide by zero; we cannot recover from these things. So, that is

actually called an irrecoverable exception.

But anyway, who will abort? The interrupt service routine will abort; who will correct?

The interrupt service routine will correct. So, the decision of whether to abort a program,

or keep the program, and when I keep the program, should I execute that instruction

which caused, caused me the exception, or the instruction following it; can I ignore the

instruction; all these decisions are made by the interrupt service routine. So, today, we

get divide by zero error, and your program aborts, that divide by zero is actually, is

actually printed by an interrupt service routine. And, the interrupt service routine decides

that, it needs to come, kill your program, because, there is a divide by zero. So, these are

all some of the very different ways by which, you know, events of the nature of interrupt

and exceptions happen in a system.

(Refer Slide Time: 12:44)

So, the security implications of interrupts are very, very important. So, whenever you

talk about secure operating system, or whatever, how does the operating system handle

interrupt? So, this is some question that we need to answer very emphatically.

For example, I could get a denial of service attacks by repeatedly issuing interrupts;

because, interrupts actually switches. So, you are working; it is an asynchronous event; I

could give an interrupt; again it can, it can go. So, the processors, CPU will be made to

keep serving interrupts, rather than serving the normal CPU processes. So, this is one

way by which, if I have a control and I start invoking the interrupt service routine quite

frequently, then the processor cannot do the normal functionality but it can do something

else; and it will keep on, you know, servicing the interrupts, and that is one example of a

denial of service attack.

Similarly, the ISR is an attractive module to attack because, once I am sitting inside an

ISR, I normally run with very high privilege, right. So, by attacking the ISR, and getting,

penetrating into it, I get the privilege level of the ISR, which essentially becomes

extremely important for me to compromise execution, to get into the system, in a highly

privileged mode because most of the ISR works at privilege level zero. So, if I get into

the ISR, nothing like that, I could create much more havoc, than other entry points.

(Refer Slide Time: 14:30)

So, there are non maskable interrupts, which cannot be disabled but there are maskable

interrupts which can be disabled; yesterday we talked about that. So, if I clear the IF flag,

in the EFLAGS processor register, it disables all maskable interrupts. And so, we can use

that IF flag, the interrupt flag; I can use CLI to clear that interrupt flag; I can use STI to

set back that interrupt flag. And, there are some special cases like, PUSHF, POPF, task

switching and IRET, which will affect EFLAGS register implicitly, which because, it

will, PUSHF will actually push the value of the flag registers into the stack but it cannot

touch some values; while POPF will, write from the stack on to the EFLAGS register,

and some fields may or may not get updated. So, similarly, IRET, task switching and

IRET can affect EFLAG register implicitly. Now, what happens is, all the interrupts

today are all called vectored interrupts. So, whether it is software generated, hardware

generated, exceptions, for every interrupt, there is a basic number. So, there is an

interrupt descriptor table.

The interrupt descriptor table can have up to 256 entries; 0 to 255 and each interrupt in

the system, as I mentioned yesterday, is mapped onto one such number. So, in the range

0 to 255, 0 to 31 is hardware defined; 32 to 255 is user defined, though not very strictly,

but this is how they follow the standard.

(Refer Slide Time: 16:21)

And, when I generate an interrupt 0, or interrupt 1, or interrupt 2, please note, on your

right hand side you have the figure; you go to that corresponding gate for interrupt, and

that gate will give you the base address of the code of the interrupt service routine and

so, you can, and it also gives you the offset into that code. So, you can go there, and start

executing the interrupt service routine. So, what will the interrupt gate have? We are

going to see it now. It will have a pointer to a code segment descriptor; it will have a

pointer to a code segment descriptor because that is the code, that is the descriptor which

points to that segment of the memory, which has the interrupt service routine, and it can

also have offset into that. So, I can go and start executing.

(Refer Slide Time: 17:12)

So, there are three types of; so, in a GDT, we saw the GDT this morning. There were

different types of descriptors there. In the IDT, there can be 3 types of descriptors. One is

the task gate descriptor, which I, which is defined like this; which we saw yesterday,

right. What was the task gate descriptor trying to do? It does a task switching completely,

right. And, we also told, some classes of interrupts which will require task switching,

right. The other two types of descriptor are the interrupt and trap gate descriptor.

(Refer Slide Time: 17:47)

The interrupt and trap gate descriptors will allow that interrupt service routine to work

like a function call. Yesterday, I told you, an interrupt service routine can be, in the

previous session it was mentioned that, the interrupt service routine can be like a

function call. It can also be a complete task switch. If I use a task gate, this also I had

mentioned in the previous session, if I use this as a task gate, then, you will do a

complete process switch; if you use an interrupt or a trap gate, then, you use, then, you

treat it like a function call. So, the interrupt and trap gate looks like this.

Interrupt gate, again, there is a segment selector, which points to which code segment is

going to execute me; and then, there is an offset, which basically says, from in that code

segment, from which offset should I, from the base of that code segment, which offset

should I start executing; similarly for the trap gate. So, the difference between interrupt

gate and trap gate is that, in the case of an interrupt, what happens, in the case of an

interrupt, the INT, the instruction at which the interrupt happens can be restarted, right.

So, when I see an interrupt gate, what is going into the stack, that is where I should

return, will be the current instruction pointer.

When I use a trap gate, what goes into this, will be the next instruction pointer; because,

that instruction, I am going to ignore; you differ. So, that is the difference between an

interrupt gate and a trap gate. The interrupt gate, when it returns back, it will store the

return address of the interrupting instruction. A trap gate will store the instruction of the

next possible instruction. So, that is difference between interrupt and trap gate. In terms

of organization, please note that the eighth bit is 0; now the eighth bit is 1; that is the

only difference between interrupt gate and trap gate.

(Refer Slide Time: 19:57)

So, what happens when an interrupt comes? There is an interrupt vector; this goes to the

IDT. There is an interrupt or trap gate there. If it is an interrupt gate, that interrupt gate

has what? It has a segment selector. So, that segment selector actually points to a

segment descriptor; that segment descriptor gives a base address to which I will have the

offset; and, that is where the interrupt procedure will be stored, and you start executing

on it. This is how normal interrupt works. But, in case I need to do a complete task

switch for double fault etcetera, that I explained yesterday, what will happen? The, the

same thing; so, there is a interrupt vector; it sees a task gate.

(Refer Slide Time: 20:49)

That task gate will point to a TSS descriptor; the TSS descriptor will point to a TSS, and

you start executing. So, this is a complete task switch that is happening here.

(Refer Slide Time: 21:11)

And, when an interrupt service routine comes, if the interrupt service routine and the, if

the interrupt service routine and the program that is interrupted are there in the same

privilege level, there is no stack switch that will happen. But, if the interrupt service

routine and the process that created the interrupt are in two different privilege levels,

then, there will be a stack switch. The interrupt service routine will use the stack

corresponding to its privilege level. So, this diagram basically explains you.

If I do not have a stack switch, the stack pointer before transfer to handler will be like

that, in the top, and the stack pointer after transfer to handler. So, what will happen is,

what will be stored there is EFLAGS; your entire flag will be stored. Then, your current

code segment selector, the EIP, the current code segment selector; then, the EIP is what,

the instruction pointer, and the error code, all these thing will be stored in your stack. If

the interrupted, interrupt service routine and the task which got interrupted, if both are at

the same privilege level, then the stack switching will not happen; and, this is what will

be stored in the interrupted procedures stack.

If in case both are different, then what will happen? In case both are different, then, that

is, the interrupt service routine and the process which is interrupted, are in, are in two

different privilege levels, what will happen; there will be a stack switch. And, in the

interrupt service routine stack, right, in the handlers stack, all these error code, EIP, CS,

everything will be stored. In addition, your SS also will be stored, because, I want to

restore back my original stack, right. So, so, this is how stack switches happen on the

interrupts, and this is extremely important from a security point of view. We did

elaborately, yesterday, in the last session, on this.

(Refer Slide Time: 23:30)

Now, there are many, there are many protection mechanisms in the Intel X86

architecture. There is a current privilege level; there is a descriptor privilege level, and

there is a requested privilege level. We have seen that in great detail, right and this

basically, why we are talking about here is that, your level 0 could be operating system

kernel, level 1 and level 2 can be operating system services, level 3 can be applications.

So, this is how the stack is organized, and the, this 4 levels, the operating system

corresponding bits of the operating system are put in each level, and there is enough

amount of protection across these privilege levels.

(Refer Slide Time: 24:23)

So, what happens is that, when I do a control transfer, Jump CALL, Return SYSENTER,

SYSEXIT, INT i, IRET, interrupts and exceptions, all these things are control transfer

from one program to another program. There we go and see, if the CPL is less than or

equal to DPL, or RCPL is, or your RPL is greater than or equal to that of DPL. So, all

these checks will be done; we have seen very, very extensively on this check; and these

checks need to be done for privilege, while I am doing a control transfer.

(Refer Slide Time: 25:09)

So, what are the types of control transfer? We just saw Jump 0 x 8 colon something; 58

or something. There, I just directly give the segment, code segment. So, I give the target

segment selector, and I jump; that is the first number, time of control transfer. The second

thing is Jump, give a call gate selector, and dummy offer, and from the, from the call gate

selector which is a target segment selector, that call gate selector will give me which is

the target segment collector, and then, the offset is also given in the call gate. So, I will

start executing from that. I could also say Jump TSS selector and dummy offset. Why

dummy offset, because, the task stage segment to which I am jumping will have which

instruction that needs to be executed, and so, you start executing from that.

Similarly, I could have jump task gate collector dummy offset. So, I go through a task

gate, to a, to a task gate segment selector, to a task gate segment and start executing. So,

these are 4 types of control transfer, wherein I, we can go from one code to another. The

first type of control transfer can happen between one flow and another flow; any, any

flow and any other flow. While the second type can happen if there exists a call gate

sector that supports this, the third sort of jump is that, directly we use the TSS selector

and go there; and the fourth jump is, we use the task gate selector and do this act. So,

these are all 4 types of control transfer under this secure privileged environment.

(Refer Slide Time: 26:57)

Now, note that, we also introduced a notion of RPL. Please note that, interrupts do not

have a RPL. So, RPLs are removed while the CPL checks that we had, are ignored only

for hardware generated interrupts. So, for all the software interrupts, we still do a current

privilege level check because if I do not do a current privilege level check, this has a

very big security implication; any Tom, Dick and Harry can create lot of interrupts, and

thereby give you denial of service. So, in your definition of security, the confidentiality,

integrity and availability, the availability will take a big task. If you do not go and you

now, do a check on who can execute an interrupt service routine.

So, beyond that 31, or 32, there is a check that, you can execute the interrupt service

routine only, if your CPL is less than your descriptor privilege level. So, the interrupt

service routine will have a corresponding descriptor, that will have a privilege level; the

fellow who is calling that, should have at least that privilege level, if not numerically low

and that is the reason, why this, this thing has become extremely complex.

Now, let us see here, when I do a software generated interrupt, right, always if there is a

source code, if the interrupt gate, if the interrupt descriptor in the IDT has a privilege, is a

descriptor privilege level much lesser than mine, then, there is no way by which the

interrupt could be served. So, I need to have lesser; lesser means, numerically higher

privilege. For example, if I am a, if I am a privilege level 3 code, but I am generating a

software generated interrupt, say INT 50 and if the DPL of that code is only 2, for

example, then as a 3 level privileged fellow, I cannot go and execute that ISR; then, this

is true for all software generated interrupts.

(Refer Slide Time: 29:27)

So, then, for every exception, there is error code that is generated. The error code

normally is 32 bits, in which the 16 to 31 are reserved. The remaining, the first to, first

16 bits, there will be 13 bits which will give you a selector because the selector, last 3

bits are any way 0. So, it will, it will give us a selector index; this corresponds to which

code segment actually went and created this error and that code segment can be in IDT.

It can be, first and foremost, that can be a external hardware interrupt, and that is given

by that EXT pin, EXT bit; if it is 1, then, it is an external hardware; if it is 0, then, it is a,

it is not an external hardware that created an interrupt. The next thing is IDT; if it is 1,

then, go and look for this particular selector in the IDT, because I could create an

exception while executing an interrupt service routine also. Any instruction inside an

interrupt service routine can also cause an exception. So, in that case, I have to go and

find out, if it is there in the IDT and if your TI bit is zero, right, sorry, your IDT bit is

zero, then, then only your TI bit becomes valid. If your IDT bit is 1, you know that, it is

caused because of an interrupt. So, there is nothing more I need. But, if your IDT bit is

zero, then, if your TI bit is 1, then, look for that code, which caused interrupt in the LDT,

or look, if it is zero, look for the code that causes this interrupt in the GDT. So, your

exception handler, the error code of the exception handler, gives very good, you know,

infrastructure for doing, for understanding the error, and going and locating which

particular code actually caused the error.

