
Information Security – II 

Prof. V. Kamakoti 

Department of Computer Science and Engineering 

Indian Institute of Technology, Madras 

 

Lecture – 23 

Lab1 Part 3 - Week 4 

 

(Refer Slide Time: 00:09) 

 

We start with the section, name your code that is line number 48, now we say first we 

initialize ds. So, ds will have a read only segment which is 0x, which is stored in 0x18. 

So, let us say where will 0x18 descriptor we stored we know that the GDT starts at d000. 



(Refer Slide Time: 00:37) 

 

So, we will do x slash 2x0xd018, there you see that there is a descriptor starting at b000 

of limit 512 bytes and you see here it is 409. So, it is privilege zero, but it is a and the 

type is 0. This is privilege zero read only data descriptor. For details of this we can 

actually see here for the segment descriptor. 

(Refer Slide Time: 01:31) 

 

So, type 0 is a read only data descriptor, if you see here and for you to understand again 

just going back to what had covered earlier. For you to understand, how the descriptor 

looks like, this is the structure of the descriptor. 



(Refer Slide Time: 01:48) 

 

So, the base address here and the segment address limit here, part of segment limit here 

part of base address across three places. So, just remember this or try to note this, so that 

you could interpret this. Now, we have a read only descriptor at b000 of size 0x200 and 

privilege zero. So, let us go and make a note of it here. 

(Refer Slide Time: 02:15) 

 

So, 0x18 in GDT is a read only data seg starting at b000, its limit 0x200. 



(Refer Slide Time: 02:52) 

 

So, similarly let us go and say what is 0x20, line number 50 here and you see that this is 

again b200 but note that, this is now of type 2, this is a read write segment starting at 

b000 200 of size 0x200. So, here 0x2020 in GDT is a read write data segments starting at 

b200 and of size 200. Now, what is b28, again I am doing a slash 2x here. Note that it is 

again read write segment of privilege 0 starting at b400 and of size. Let us do the same 

thing again, here 400 now, what is 30 now, 0x30 is b000 600 again is a read write 

segment and what is b038, please note that this starts at c000 in this of size 0x40 

hexadecimal 40 which is 64 bytes and it is type 6, what is type 6? Let us go to this and 

see what is type 6, the type 6 segment is read write expand down. This is type 6, its starts 

at c000 and of size 40. 



(Refer Slide Time: 06:04) 

 

Then you make the esp as 80, which is very important, ebp is also 80. So, we have come 

to line number 59. 

(Refer Slide Time: 07:27) 

 

Now, before we start working on the line 61 and above. Let us now look at this code 

starting at 75, 75 is basically the matrix multiplication algorithm. So, when I call, when I 

execute a call matrix multiplication, what will be there on the stack is the return address. 

So, what we are doing here is, first we will pop the return address and store it in EBX 

and we will make ECX as 0 and what we are going to store is, we are storing the return 



address into the location GS colon 0x80. So, what is GS? GS starts at b000 600. So, in 

b000 680, I am going to store the written address. So, every time I call matrix mult. 

(Refer Slide Time: 08:52) 

 

So, I will just put a session like this working of matrix mult store return address at 

0xb080. Now, before going to this part of the code, we will just finish off the easier part 

which is i start. So, let us look at the matrix multiplication code. 

(Refer Slide Time: 09:33) 

 

Matrix multiplication code is for i equal to 0 to 10, j equal to 0 less than 10 makes a j 

equal to 0 for k equal to k less than 10 c i j equal to c i j or a i k into b k j. So, there is a i 



variable, there is a j variable, there is a k variable. So, for all these i, j and k, we need to 

have central purpose registers. So, when we look at it, my ECX, this is i, so that is, i 

made a comment, i start, j start, then k start. All this c code is the c code starting from i 

start going till I finish. So, now, let us see what the c code essentially means before we 

go back to the code before the i start. 

(Refer Slide Time: 10:29) 

 

So, ECX is a loop variable which is representing i which stores the value of i ESI is loop 

variable it represents the value of j and EDI is a loop variable it represents the value of k. 

So, initially I have made ECX as 0 long back here itself, I made ECX as 0. Now, what I 

do here is every time I compare ECX with 10 if it is equal this is called j e, j e means if 

jump and equal if it is equal i is at the end of the code. This is something like I finish the 

entire program, I finish the matrix multiplication but if I am not if ECX is not equal to 10 

then I start the j loop ESI equal to 0. I make j equal to 0 here again. This is j start every 

time I compare j with 10, if j becomes equal to 10 jump one equal to I got to j finish j 

finish is here otherwise what I do I move EDI 0. I make k as 0, EDI stands for k and I 

have to make c i j equal to 0 that is what this code says c i j is equals to 0. Initially, I 

store c i j in some temporary location, again it is b000 700, GS is b000 600. So, this will 

be b000 700. 



(Refer Slide Time: 12:10) 

 

In the matrix multiplication, store the local the intermediate c i j s in 0xb6. So, this 

should also be stored it in address at b680 that is what we do because GS is b600. So, 

this would be b680. 

(Refer Slide Time: 13:05) 

 

So, I make a j 0, there is that address as 0 now I am doing the k loop I compare k with 

10, if it is equal I go to k finish here jump on equal to I go to k finish here. Otherwise I 

do this move EAX as 10 mul ECX, mul is a command which will take the value in 

ECEAX and multiply with the content of ECX. Basically, this gives me i into 10 and add 



EAX to EDI. So, what is EDI it is a EDI is k. So, this will give me. So, I into 10 will be 

stored in EAX now this will give me EAX is equal to I into 10 plus j plus k. Now, d s 

colon EAX, ds is the point let us go of here when I am calling the matrix multiplication I 

push before I call the matrix multiplication; I push the two source segments and the data 

destination segment into the stack. Please note that my initially the matrix is stored in ds 

my matrix is again stored in 18, 18 is where we have stored the matrix. So, let us go here 

0x18 in GDT is a read only segment where I have stored my matrix. So, these two are 

the source matrices and 0x20 is the segment in which I need to store the return multiplied 

matrix. So, these things I am pushing into the stack. At this point of time, I pop when I 

call matrix mul, I pop the EBX that is the written address and then I pop the destination 

matrix because I pushed in this order first the destination will be there then the source 

two and then the source one. So, I pop. 

(Refer Slide Time: 15:45) 

 

So, e s will store the destination segment address then again I pop ax and move it to ds, 

ds will store the source two and f s will store source one. So, whenever I am executing 

matrix multiplication, if I say ds inside that is the source one matrix. 



(Refer Slide Time: 16:21) 

 

So, here what time moving to the register b l, it is of i k is now in b l in register b l, b l is 

the 8 byte of register. First 8 bytes of raise the EB, now again I move EAX as ten, EAX 

becomes I into 10 EAX becomes 10 and mul EDI. What is EDI? EDI is k. So, EDI is 

now EAX becomes mul EDI will multiply the content of EAX with EDI and store the 

answer. So, EAX now will become 10 into k add EAX with ESI, ESI is j. So, EAX is 

now 10 into k plus j. 

Now, move byte b h f s colon EAX. So, what is fs? fs is the source two. So, this will 

store b of k k j. So, b h is equal to b of k j now and byte b l and b h. So, I will get ah. So, 

so the answer would be in bl. So, bl will be equal to now a i k and b k j byte wise and 

amperes. Now, I would byte in or this value this stores the temporary result that is the 

temporary location for c i j, this is bb700. So, c i j now will become c i j plus a i k and b 

k j. So, this plus is nothing but now I am increment EDI this is nothing, but k plus and 

then it comes to k stack again it completes. So, this explains how the matrix works and 

after a finish one k loop again I move EAX as 0 a multiply ECX. So, what is ECX? So, 

now, EAX becomes 10 into i and add EAX comma ESI. So, this becomes EAX actually 

becomes 10 into i plus j and GS stores the destination segment. So, i moving into d h the 

temporary value of c i j and actually I should say a temp value of, now, I am updating c i 

j right. So, this is the way I do and also note that I cannot directly move byte e x colon 

EAX to GS colon 0x100, I cannot do two memory operations in an instruction that is a 

restriction of the x-axis instruction at architecture. So, there can be only one memory 



operand I can do. So, essentially I am doing it as two instructions here. Then I am 

incrementing ESI, ESI is nothing, but j plus then I jump to j start, once j is finish I am 

incrementing i plus and I start after this is over I make my counter i as 0. 

(Refer Slide Time: 20:41) 

 

Then you know that GS colon 0x80 is storing the written address as you see here store 

return address as b680 that is GS colon 080. So, I move it to EBX and I push that value 

into the stack and I do a return. So, I actually jump to the written address. 

I jump to the written address. Initially what I do, I stored the matrix is stored in the 

segment given by the selectors 0x18. I multiply and a second source is also 0x18. The 

same matrix now, the destination matrix 0x20 has a square after this at this point. Now, 

again I am pushing a square as the source one and as source two and in 0x28. I will have 

the return matrix, which is a cube and after I finish this I jump l 2 that is I jump this 

entire routine and come to this location then what I do here is I go back to my original 

0x10 segment, what is that 10 segment? 0x10 is a start b00 and codes to limit bff, I go 

and make b plus 2d208 as 0xd ECE. 



(Refer Slide Time: 22:30) 

 

So, this now becomes 0xdece to start with and 2ff8 as 0. So, this is b plus 2 is ddff8 as 0 

it remains 0 and then d200 as 0xbabed200 as b and d208 as cafe. 

(Refer Slide Time: 23:34) 

 

Then it goes and so these are all some statement, which we need not worry about now. 



(Refer Slide Time: 23:48) 

 

Let us go to 159, it loads GDT from b plus 2 dffa. So, what was dffa dffa was GDT. So, 

that old GDT is loaded similarly 2ff2 that is dff2 stored IDT and. So, it is load the old 

IDT of the GDT. So, now, it says jump 0xeight this corresponds to the course segment of 

the GDT because already I am loaded the GDT of that and d word fin is next. So, it 

comes here and then it initializes all d s and this these are all the descriptors in the 

original GDB and then it says in three fine now we should know what are these code 

segment and ah you know the data segment in the GDT of the GDB carnal right that we 

will see once we execute it. So, this is how the program basically executes now this is 

loaded now how do you execute the program. 



(Refer Slide Time: 25:02) 

 

Till now we have just seen how it is loaded now we just press c now you get some signal 

sigsegv this is a segmentation fault this is again some problem with the you know the 

mimicking of the thing. So, again we load it no there is an error again we load it now we 

continue you should a sigtrap; that means, the program has executed correctly the last 

instruction executed was a1 e1. Right now, we will go and see what are all the things 

happening here first and foremost. 

(Refer Slide Time: 25:56) 

 



Let us go and see x slash 2 x 0xdffa there we note that this is the place where your GDB 

is GDT is there. So, 00 one seven is the GDT start is a size of the GDT of GDB and it 

starts at 0xone000. So, suppose. So, x slash x 2 x 0xone000 one000 note this is a null 

descriptor one000 8 is the code descriptor please note that the codes should stands starts 

at 0 and it is privilege level is 0 and it has a highest limit offfff and so this is the course 

segment descriptor of the GDT. 

Similarly, IDT where does it starts x slash 2 x that IDT value is stored in dff2 please note 

the screen here. So, the IDT again had a limit of000 or the IDT actually started at 0. So, x 

slash ah 2 x 0x0. So, this is the first IDT for divide by 00x8 is for the first interrupt one, 

this is for interrupt two. This is how it looks into three that we are executing this is by 

restart. So, these are all the incorruptible for at the GDB’s IDT now let us see what this 

happening whether the code has work correctly 0xd200 bcbabed208, we should see cafe. 

(Refer Slide Time: 28:20) 

 

We will also see something that has happened to a stack. The stack is 0xe000, so x slash 

2x0xc080 because the stack point row set to 80, it will expand down segment. So, we 

should see c070 as you see here from c080, there as the stack has been populated bc18 

28 bc in stuff like that. So, you can even say x slash 20xc060 then we can see much more 

here. So, the 10bc2818bc, these are all the stack values that have been pushed into this. 

So, we had been pushing 28 18 as you see here into the stack. When we were calling this 

calling these stack here please note we have being pushing 18 and 20, etcetera but then 



we also pushed finally, we pushed 28 18 and this bc is the written address if you just 

calculate it will be a 0bc is where you come back here and. So, this is all that and we can 

also see that the written address was stored in some place. 

(Refer Slide Time: 30:35) 

 

You can just say x slash x0xb680, Now, that this is the loop return address and that is 

also bc that was stored there and the matrix of course, is going to be stored in the final 

segment starting at b400 is where it is stored. 

This basically explains you the working of segmentation, how do you set of segment 

registers? How do you convert a c code into assembly code? And how you execute this 

entire frame work? I hope you enjoyed. So, you can now start working on this, I want 

you to do expand this code and do a power 5 power 10. What it means, I just want you to 

do more exercises on this probably increase the size of the matrix. So, these are 

something that you can play with, so that you get a grip over the entire assembly 

handling of x86. 

Thank you. 


