
Information Security - II

Prof. V. Kamakoti

Department of Computer Science and Engineering

Indian institute of Technology, Madras

Lecture - 22

Lab1 Part 2 - Week 4

(Refer Slide Time: 00:09)

This is the first assignment that we need to do and in this assignment I am going to teach

you a way of writing assembling code and also segmentation. So, let us now start with a

programming assignment, where I am going to multiply 210 cross 10 matrices, where

each element is a byte. Actually both that matrices that I am multipling are the same

matrix. So, I am calculating A square then I will calculate A cube. I will take a matrix 10

cross 10 matrix, which each elements being at byte. I have 100 bytes, I multiply that the

matrix with itself, so I get A squared, again I multiply A squared with A to get A cube.

And this multiplication is not the normal multiplication.

(Refer Slide Time: 01:15)

How do you multiply 210 cross 10 matrix? For i equal to 0, i less than 10, i plus plus, for

j equal to 0, j less than 10, j plus plus. I am writing simple c code, c i j equal to 0 for k

equal to 0, k less than 10, k plus plus. c i j equal to c i j plus a i k into b k j. Let me just

put some labels here, here your k will finish then your j will finish and then your i will

finish. Your i will start here, your j will start here, the j loop I mean and your k loop start

here.

To simplify our complete code in this case what I am going to do is, I am going do r and

then n. So I am going to binary operations here. so instead of plus I am just going to do a

bit wise r of the bits. Note that c i j, a i k and b k j all these are byte, these all are 8 bits.

So, I am going to do bit wise r of c i j with the output of the bit wise standard of a i k and

b k j, this is the code that I want to execute. Now, your A matrix will be stored in one

segment, B matrix will be stored in another segment. Your c matrix will be stored in

other segment and then we will also use functions calls, basically to demonstrate, how

the stack works and how your calling routine communicates with the call routine. As I

told you one of the earlier sessions that this had been one of the major vulnerability, so

let us understand through assembly programming, how passing of parameters actually

work.? We will write a code, where we write an assembly code through which we

actually pass parameters, so that we have a real hands-on experience here. So, this is the

code for which I am going to write assembly code here and we will now go through the

assembly code in detail.

(Refer Slide Time: 04:42)

As we had seen in the directory, the procedure is we will define 3 segments P, Q and R.

Initially, P will be storing A, now we will multiply the A stored in P with the same thing

to get A square which will be stored in Q. So in the segment Q, A squared will be stored.

Again will take the A square in Q and A in P compute A cube and store it in R. Just make

things little bit to understand, what we have learnt in the theory class, we will make this

P as a read only segment, while Q and R as the read write data segments. And every time

I do this matrix multiplications I call a subroutine which will take 2 segments as input

and 1 will be the source segment the another will be the, 2 source segment as input and it

will fill the values in the destination segment. So, this is how I will basically do a

function call here.

Normally, when we want to multiply these 2 matrices as a, suppose I define a function

for this, I will take the A and B matrix as inputs. Meaning I will take the address of

starting of the A and B matrix as inputs here, and I will also take the address of the

starting of the C matrices inputs. I will do these operations and store the value of C there

in the address that is provided, that means, what I mean by address of A and B matrix?

Basically, I am taking the details of the segments, where A and B are stored and also

where I should store C and I will store it back. So this how if I want implement these

entire matrix multiplication as a function call and I call it from main routine, so the way

the parameters are typically passed would be through these addresses and this is what we

will be implementing here.

The notion of using call as a repeat will be to basically explain how the stack works

because we have already looked at stack machine where we explain, how stack works we

will see how it is doing with a practical demo here.

(Refer Slide Time: 07:20)

As we have seen there, we need the gdb kama which is there in the directory, we need

inp dot gdb, which are the commands, the test dot ld which are the loading options and

today we have lab 1 dot S. This is typically what will be using for other assignments, it

will be lab 2 dot S, lab 3 dot S, lab 4 dot S and so on.

(Refer Slide Time: 07:42)

The execution procedure we have already seen this, so you can go through these slide

again, if any doubt, I have already explain that in (Refer Time: 07:54) detail.

(Refer Slide Time: 07:59)

.

With this let us again go back. Now, we have loaded the entire code here, so let us start.

If you open lab 1 dot S, what you see on the right hand side is the thing that you will see.

So this is the code, note that there was a dot text. In the pro dot l d file I am going to the

next here so more broad s dot l d. There was a dot text and we said load the dot test in

0x8000 that is what you see here. The dot text in the file as you see in your right hand

side here, the dot text will get loaded that 8000

Now what are we doing here? So, there is a GDT already running, so that will have its

own GDT and IDT. Note that we are currently in provision level 0. We go and store those

values of GDT and IDT in code base plus 3 ff , what is code base? 8000, 8000 plus 3 ffa

is dffa. So, in dffa we will store the old values of GDT and DFF2 we will store the old

values of IDT. What will this GDT contains? It will contain a 16-bit limit and a 32-bit

starting address of GDT. We will just a start making note here, so I start from here again

in 0xdffa, you are in line number 8 here 0xdffa we will be storing old value old GDT,

GDT start address plus limit. Similarly, 0xddf2 will be storing GDT, IDT's, IDT start

address plus. Note that these 2 commands can be executed. What is difficulty in

executing these commands, note that SGDT and SIDT are privilege instruction and they

can be executed only with privilege 0 code. But when I am starting executing of this

code this is in privilege 0, so this will execute these 2 commands for sure. Then we clear

the task switch, then these are all something basically to tell that this code is executing.

So, 8000 plus 3200 is d200, I store the value deaf, so 0xb200 I store the value deaf. And

in d208 I store the value 0001.

And in the location dff 8, I store the value 0 this is line number 70. So these are all 8 bit

movement, sorry 4 byte movement. This is word is basically 16-bit that is 2 byte

movement, so you may get as 000. After that I load the GDT of mine, the GDT of this

code. So, the lab 1 dot S to basically explain you what is lab 1 dot S. Basically, all the

code that will have as a part of this assignment, this is the memory map of our code

0xa000 to 0xafff we will have the Code of the program. 0xb000 to 0xcfff we will have

the data of the program. And 0xd000 to 0xdfff will be the Operating system area. So

when we load the program, we have a small Mini Kernel also loaded. Note that now this

memory map you will follow, note that all that you are doing here so far like storing the

old GDT, IDT, d20 all these thing are in the page d000 to dff, which is the operating

system area. Now, what next step is, the operating system actually stores my address at

address my GDT so for executing my code because I will have my own segment, I love I

need my own GDT show the 0xd202 will store the GDT address plus limit.

Now let us go and find out so go back to this window here on you left hand side let us

say x slash now that is 16 by, so 4 plus 2 6 bytes. So, x slash 2x0xd202. Now you will

know that the limit is ff and actually 0 0ff the basis d000 and plus 00. So, there is a 16-bit

limit which is ff and 00 ff and there is a 32-bit start address which is 000 d00. So, from

this we will get that, I am making another statement here. I will say my OS page, GDT

starts at 0xd000 and this of limit 0xff.

Similarly, let us go back to the next statement here your IDT line number 22. IDT base

and address are stored at d20A. Your 0xd20A will have IDT Address plus Limit. So the

IDT starts at (Refer Time: 17:16), for that we go and say (Refer Time: 17:19) 0xd20A.

Your IDT starts at d210 and it as a limit of a zero, so as a limit of 00a0 as I am marking

here and start address at a 0000d210. So, your IDT starts at 0xd210 and is of limit

0x00a0.

Now just as a sanity check let us go and find out what should be the. So each GDT is 8

bytes, so I will just put slash 2x0x the 000 it should be a null descriptor. As you see that

the first descriptor in your GDT which is stored at you know d000 to d000 1 2 3, so 4

bytes, sorry 8 bytes so 0, 1, 2, 3, 4, 5, 6, 7 is first null descriptor. Now, we want to move

ax comma 0x58. So the ax gets 0x58. Now I am loading LDT with ax. What is LDT? It

is Local Descriptor Table address. So what is 0x58? It is selector in the GDT.

(Refer Slide Time: 19:12)

Now, how will I find out what is the value of, I say x slash 2x0xd2 sorry d058. And note

that this is pointing to basically TSS selector which starts at d100 and this 82 basically

tells that this is a selector of privilege level 0. Basically, this is a LDT selector of

privilege level 0, 0x58 is an LDT selector and the LDT starts at d100 and it is of size 0 0

ff. So this is what I set up the LDT in case I need it. Let me go here, so the 0x58 in GDT

stores a selector for LDT. LDT starts at 0xd100 and is of limit 0 0 ff.

Now we see what is 0x60, x slash 2x 0xd060 what is that? Please note that this is

basically a task segment descriptor of privilege level 04089 here, and is a 32-bit task

state segment descriptor. It starts DA00 and sizes 67. As you know that task state

segment has total bytes which is 6 into 6 into 16 96 plus 700 and total 104 bytes. So, just

basically is a task segment descriptor which starts at DA00 and the size 67. I should also

note here that 0x60 in GDT stores a descriptor to current for current (Refer Time: 22:28)

for current PL-0 task. It shows at TSS descriptor. TSS for PL-0 task starts at 0xDA00 and

is of size 104 bytes. So, this is what it is currently executing.

(Refer Slide Time: 23:45)

Now, we are moving 0x10 to DS, SS, ES, FS and GS. So what is 0x10? Let us go and

say x slash x, x slash 2 x, 0xd010. Please note that this is segment starting at b000 and as

I huge limit bfff and it is privilege level 0 and it is a read write able segment. So, we will

go back to this now, 0x10 in GDT is a read write data segment start as0xb000 limit as

0xbfff. At end of these all these selector will now can whatever you write will starts from

b000 and whatever offset from that and they are all PL-zero segment. Now, what is 8

0xd008, this is a code segment, which starts at a000 and it is of size limit fffff, f followed

4 f's as you see here, there is also small f here, this i huge segment.

Now, you jump to this 0x8 with an offset start minus code base, this is start address and

code basis on the top, this is code base. The code base starts at a000. So, what is start

minus a000? Basically, we are start minus a000 is total number of bytes consumed by the

code above it. So this will be from a000 whatever be the number of base consumed will

be this start minus code base. If I say jump 0x8 colon start minus code base, it will take

the base a000 and it will add so many bytes which is given by start minus code base and

little jump, that means it is going to start it will jump to move d word 0x1 ff0 (Refer

Time: 27:26) so it is basically coming to this. Why it is coming to this? Why do I need to

do this jump? Because I need to switch from GDT code segment to my own code

segment, 0x8. Here, I have switched on to my own data segment, now here I am

switching on to my own code segment. Now makes move d word 1ff 0 0, move esp as

1ff 0 and pop fd.

It is initializing all the flags to 0, pop so you know move to what is d word 1ff 0 because

the basis b, bff 0. We are now moving to 0xbff 0. We have moving the value 0, d word is

the double word, which is 8 bytes and moving values and I am making stack pointer also

point to 0x1ff 0. I am doing pop fd, essentially 0 little word initialize all the initial able

flags. And now I give control to the code. What we have done so far is what the

operating system normally does, so creates memory, load program, it sets up all the

things and now it gives control to the code.

So, we have described this entire process. Further, it will execute this code, and after that

it comes to this stage where it move ax comma 10, ds comma ax. What is GDT? Is d010

it is a segment starting at b000 and say bfff, then what is does is? It goes and loads the

store, please note that we are store and dffa, the previous GDT and the LDT, IDT entries

load at back and it does a jump 0x8 colon fin comes here for this GDT. Now the GDT

has changed, so this 0x8 will now corresponds to the GDT of the GDB and it will come

back. So, this is the way the operating system moves the GDB (Refer Time: 30:25)

moves from itself after initializing certain things and you start executing your code, and

after you finish your code you actually give back control by getting that GDT and IDT

loaded. We do this in 3, you set up all these things with a new GDT and you do this in 3

which will take you back to the GDB part.

