
Information Security - II 

Prof. V. Kamakoti 

Department of Computer Science and Engineering 

Indian Institute of Technology, Madras 

 

Lecture - 20 

Segmentation Recap - Week 4 

 

 

(Refer Slide Time: 00:13) 

 

Let us very quickly, in next 10 to 15 minutes, basically get to know what were the things 

that happened yesterday? When we talk of segmentation, now there are two addresses 

that we are talking of; one address is the actual address in the ram, another address is 

what the compiler generates. The compiler, when it compiles the code assumes that your 

code starts at 0, your data starts at 0, your code segment starts at 0, your data segments 

starts at 0 and from that point onwards, it will assemble your data and the code. So, all 

the addresses generated by your compiler that is part of your assembly code which is 

compiled, will be with respect to a 0. So, that is what we saw in yesterday’s class in the 

previous sessions. 

But now what happens further is that every set logical address; that is a logical address 

because you assume that it starts from a logical 0 and everything with every offset that 

the compiler generates is with respect to that logical 0. Now that value gets added to a 



segment base and you get the actual physical RAM address. So, there are two addresses 

we have understood yesterday, one is the physical address, another is the logical address. 

So, the physical address is used to identify each byte of the main memory, the x86 

architecture that we are talking of; is a byte addressable architecture and so every 

memory location, every byte can be addressed individually. 

So, since we have 32 bit you can address 4 Giga bytes. For example, a system with 2 GB 

RAM will have a physical address of 2 GB. The logical address is the address that the 

programs running on top of the CPU use, they need not be based on the amount of 

physical memory that the system has. A 32 bit system has a logical address space of 2 

power 32, so if we are not using virtual memory then what will happen, the logical 

addresses generated by your system plus the segment base should be within the limits of 

the physical address because there is no virtual memory given to you. 

(Refer Slide Time: 02:52) 

 

Now, we know that segmentation provides isolation between different programs. It also 

provides isolation between the segments, which talked about it in great detail yesterday. 

So, what is memory segmentation, it partitions the addressable memory space into 

smaller, protect that address spaces called segments. We have also introduced lot amount 

of protection across these spaces. So, a segment as we saw yesterday can hold code, it 



can have hold data, can hold stack and there are also some system data structures like 

TSS and LDT. The task state segment and local descriptor tables and your GDT, so there 

is a segment can hold all these tasks. 

(Refer Slide Time: 03:46) 

 

Now, this is how a typical memory we look when it is in run. So, there what you see here 

is there are two process is running, one is P 1 another is P 2. You see P 1 scored P 1's 

data, P 1 stack, P 2's data, P 2's stack and P 2's code and then you will have some LDT's 

and TSS. So, this is typically how a segment will look and very interestingly the 

segmentation at x86 does not allow anything, any code or data or stack to over grow its 

limit. So, whenever there is a over growing like for example, your P 1's code cannot 

grow into the space allocated for P 2's data. For example here, if that happens then 

automatically the architecture will catch you and it says you are trying to do something 

illegal. So, this is the architectural aid that we talked of yesterday and then coming back 

to this. 



(Refer Slide Time: 04:48) 

 

We had a notion of a segment descriptor, we had a notion that this segment descriptor 

introduces some amount of you know privileges and then these descriptors are stored in 

the local descriptor and the global descriptor tables. This also we covered yesterday and 

this is whatever you see down here is actually the diagram of a segment descriptor, it 

describes the content of that segment descriptor so yesterday we also covered this. 

(Refer Slide Time: 05:36) 

 



These descriptors are stored in descriptor tables, there are two segment descriptor tables; 

one is called the global descriptor table, another is called the local descriptor table. The 

global descriptor table typically is used to hold the kernel data structures and you can 

load the global descriptor table at any point by using the global descriptor table register. 

So, in that sense the global descriptor table is configurable, in the sense it can be loaded 

at any point in the memory. Now, the global descriptor table is called global because it is 

common to all the processes and we also cover this in great detail in last classes, last set 

of sessions. 

(Refer Slide Time: 06:23) 

 

Now, this is typically how a global descriptor table looks. So, a global descriptor table or 

any descriptor table essentially has code segment descriptors, stack segment descriptors 

for different processes and it could have task state segment descriptor. We also 

understood what task state segment essentially means it can also have a descriptor to the 

LDT of a process. So, many things can be there inside a GDT but typically GDT will 

have the code stack, the data plus TSS plus LDT's, but that code stack and data would be 

for only the kernel processes and for all the local processes, all the stack data and code 

for the local processes will be stored in the corresponding LDT's. 



(Refer Slide Time: 07:28) 

 

Similarly, the LDT is a per process stuff and so it is given, the start of the LDT is given 

by LDTR and the LDT under GDT themselves will reside in segments and that will be 

inside the operating system memory, those segments would be described for in the inside 

the operating system memory. 

(Refer Slide Time: 07:55) 

 



Then we also yesterday discussed when a process is trying to access a segment, when it 

is trying to access segment it has to load the corresponding segment register. So, whether 

that offset in the segment register, is it pointing to the GDT or LDT and we did see that 

there is 1 bit, there are 3 bits that are wasted. Instead of putting 0's, we use for some 

constructive purpose and there is a bit, the second bit if it is 0, then it is pointing to a G D 

T and if it is 1, it is pointing to a LDT, so this also we saw yesterday. 

(Refer Slide Time: 08:42) 

 

So, this is just a diagrammatic; you know illustration of what I talked in the previous 

slide. So, if the T 1 is 0, then the segment is selected from the global descriptor table, if 

that T 1 is 1, then it is selected from the local descriptor table. 



(Refer Slide Time: 09:09) 

 

Then we also saw that there were 3 bits in this global and local descriptor, when we try to 

address these tables because all the segment descriptors start at 8 byte boundary, so we 

had this 3 bits that are actually wasted and in that 3 bits, 1 bit we use to indicate whether 

it is GDT or LDT, the remaining 2 bits we used it for what we call as a requester 

privilege level. By using this requester privilege level, I can weaken my privilege so it 

actually over writes your DPL, you take the maximum of what it is given in the DPL and 

the RPL and this can be used to actually execute some higher privilege; that means 

numerically lower privilege code with a numerically higher privilege level. So, there is 

the RPL which is also path, which is used when the code is requesting to load the 

selector. 



(Refer Slide Time: 10:25) 

 

Then we also talked about the segment registers, the segment register actually points to 

an offset within the global descriptor table and the local descriptor table. Along with the 

segment register, there is also a hidden part which basically stores the base address limit 

and access information of the current segment that particular segment register is pointing 

to and this is actually important for performance reasons. 

(Refer Slide Time: 10:55) 

 



So, this is it. For example, let us say this is the GDT, so the GDT grows from a bottom. 

The bottom 0, actually 0 cannot store anything. So, please note the see the MOV's 

statements on the left hand side top, MOV GS comma 0. So, I want GS to store actually 

a null descriptor. Then MOV FS comma 0 x 18, so 0 x 18 is 16 plus 824, which is the 

third segment, 0th is P 1 GS, first is P 1 CS, second is P 1; LDT and third is P 1's FS. So, 

0, 1, 2, 3 please note that FS, now actually takes that fourth descriptor form bottom. 

Similarly MOV ES comma 0 x, 0 8; 0 x 0, 8 essentially stands for the second, that is the 

first segment that is 0 and the first. So, you now see that ES is taking the P 1's descriptor 

that is the first descriptor from the bottom. Similarly you can see that TSS is taking the 

64 plus 8; 72, 72 is ninth descriptor, 0, 1, 2, 3, 4, 5, 6, 7, 9 right. So, SS is basically 

taking this 64 plus 8; 72, 72 is the ninth descriptor, so 0, 1, 2, 3, 4, 5, 6, 7. I think there is 

some small error in the slide, so SS is taking the seventh descriptor. So, what should be 

the seventh descriptor, 7 should be 7, 8; 56 right because each is 8 bytes so the seventh 

descriptor should be 56 and what is 56? 38, so it should be 38; 38 is 3 into 16 is 48 plus 

856, so MOV SS comma 0 x 38. Similarly we go on and so CS should be 48, so this is 

how you load the segment register and depending on the value that you are loading on 

the segment register the corresponding a segment in GDT will be mapped on to. 

(Refer Slide Time: 13:57) 

 



This is the logical to physical address translation in the absence of virtual memory. So, 

you have a segment selector that segment selector will point to a segment descriptor that 

will give you a base address to which add the effective address that is generated by the 

compiler to actually get the address in the RAM. So, this is how basically segmentation 

works. 

(Refer Slide Time: 14:20) 

 

If your compile program says DS colon 4 and DS is pointing to 0 x 20, so the 0 x 20 

descriptor is nothing, but will have base 0 x 2000 and 0 x 4 is given here, so the linear 

address would be 0 x 2004. So, this is how you work. 



(Refer Slide Time: 14:51) 

 

We cannot disable segmentation in the protected mode, but what we can do like many 

operating system does, is that you just say that the entire 4 GB is one segment. You map 

the code, stack everything to one single segment so that there is no segmentation, so it is 

equivalent to saying there is no segmentation, but for protection and security purpose it is 

not advisable to do for all the things that we have seen so far, a best preference would be 

it have a multi segment model. 



(Refer Slide Time: 15:14) 

 

So, here you see here there are many segments that are loaded and some of the active 

segments are selected using the segment registers and they are currently active and when 

they become inactive somebody else becomes active, the corresponding segment register 

will be updated with that offset. So, currently if you see the first 1, 2, 3, 4, 5, 6 are active, 

so what you see on the left most side is the segment registers, what you see on the middle 

is the segment descriptor and what you see on the right hand is your physical memory. 

Now all the segment registers are mapped on to one segment here segment descriptor 

here and so the first six segment descriptors are currently active. Suppose the third 

descriptor, which DS is pointing to becomes inactive and you want some other to be the 

DS, you just make that DS point to this right. So, I could have multiple amounts of 

segment descriptors in my local descriptor or the global descriptor table, but some of 

them will actually be mapped, some which are really active will be mapped on to the 

corresponding segment registers and these are the types of user level descriptors. 



(Refer Slide Time: 16:44) 

 

We said there are two types of descriptors, the system descriptor and the user descriptor. 

So, these are the 16 types of user descriptors that we have seen yesterday, the top 8 are 

basically data descriptors and the bottom 8 code descriptors. 

(Refer Slide Time: 17:14) 

 

This is just a very quick summary of what we discussed yesterday. So, each descriptor 



there could be a privilege level for each descriptor, if your source code is at privilege 0; it 

can access a destination segment or a destination code or data segment which is at 

privilege 3 directly, but it cannot go and read a destination code even though it is in 

privilege 3, but it is execute only I will not be in a position to read it. So, I have a 

privilege 0 source code, it can jump to a destination code at privilege 3, but it cannot go 

and read destination code segment which is execute only, even though it is privilege 3. 

Similarly a source code at privilege 3 cannot jump or you know read a destination code 

or data at which I said the DPL of privilege 0. 

(Refer Slide Time: 18:18) 

 

Similarly, a source code at privilege 0, can read or write at privilege 3, but cannot write 

into a data segment which is at privilege 3, read only data segment at privilege 3. A 

source code at privilege 3 cannot read or write any data in privilege 0. 



(Refer Slide Time: 18:42) 

 

For the less privileged code, we introduced a notion of call gate through which you know 

a code can access a numerically lesser privilege code. So, a source code in privilege 1, 

using a gate can go and access inter of service routine or any code at privilege 0 using 

the call gate or the trap gate. 

(Refer Slide Time: 19:15) 

 



I will quickly go through again a source code at privilege 0 can jump to your destination 

code at privilege 3, a pro's at privilege 0 cannot jump to a destination code at privilege 3. 

If that cannot read at destination code segment at privilege 3, if it is execute only 

segment. Similarly a source code at privilege 3 cannot jump to a destination code at a 

lesser privilege, a source code at privilege 0 can read or write any data in the data 

segment at privilege 3 or above privilege 0 and similarly, but it cannot write into a data 

segment which is read only, even though the privilege is numerically higher. 

A source code at privilege 3 cannot access, cannot read or nor write into a data segment 

visit at privilege 0. But a source code at any privilege can go and access something at a 

privilege level lesser than that using the notion of call gates and interrupt gates, we have 

already seen this. Now all these gates are the insecure, if you actually have some you 

know if you actually have if you are not careful about coding then it is a problem. So, 

this is one case study, Gurong is actually a worm that installs actually a gate call gate, so 

that it can get a higher privilege because in some earlier versions of windows the GDT 

was not protected. So, it went and installed a call gate there and once I install a call gate, 

I can do whatever I want, I can get my privilege escalations very quickly. 

If I can go and define what the call gate is that call gate descriptor then I can do wonders 

please understand that it is a major vulnerability. 



(Refer Slide Time: 21:22) 

 

Now, this is all about segmentation, this is a very, very quick summary about 

segmentation and now what we will try and do, I will answer some questions 

immediately and then we will go into the assignment part. Now, we will start looking at 

the assignment and hopefully many of you or all of you can run that assignment in your 

place and see that it is all working. 


