
Information Security - II

Prof. V. Kamakoti

Department of Computer Science and Engineering

Indian Institute of Technology, Madras

Lecture- 17

Architectural Aid to Secure Systems Engineering

Memory Segmentation Deep Dive -2 [Descriptor Tables]

This particular session is a Deep Dive into the Descriptor Tables. So, what we saw earlier

was about the Segments Descriptors. Now, we will move to the descriptor tables.

(Refer Slide Time: 00:32)

So, there are 3 descriptor tables; the Global descriptor tables - GDT, the Interrupt

descriptor tables - IDT and the Local descriptor table - LDT.

The Global descriptor tables are by default necessary. It maintains a list of most

segments, it may contain certain special system descriptor as we have seen like the TSS

and always the first descriptor is a null descriptor, I cannot use it for anything. The

Interrupt descriptor tables maintains a list of interrupt service routines as descriptors, we

already seen that. The Local descriptor table, it extends; that is, it is optional, but today

many of the operating system use it, it extends the range of GDT, right, something more

than GDT I can store and it is allocated to each task when multitasking is enabled, so

every task has its own LDT. And again, the first descriptor in the LDT is the null

descriptor. We cannot store any value in the first descriptor in LDT, we are storing some

value in the first descriptor of IDT because that is divide by 0, but here we cannot store

any value in the first descriptor of a LDT; be it you know; be it whether it is a LDT or a

GDT I cannot store anything in the first descriptor.

(Refer Slide Time: 01:52)

So, where are these table stored? They are actually stored in the memory and the starting

address of this is stored in the GDTR, LDTR and IDTR for the GDT, LDT and IDT,

respectively. Now, what is stored in the GDTR? We have not seen that so far. In the

GDTR and IDTR we store 48-bits in length. The first 16-bits, least significant 16-bits it

stores the size of the table and the remaining storing at 32-bit address pointing to the

base of the table. So, the GDTR essentially has as totally 48-bits; 32-bits will tell where

the table starts, 16-bits will tell me what is the size of this. So, 16-bits means what? 2

power 16, I have 64 kilo bytes, but each thing is 8-bytes. So, now you calculate what will

happen? With these 16-bits how much I can go 64 kilo bytes, each is 8-bytes. So, how

many segments can I store? 8 kilo bytes? 16-bits is the limit, so if 16-bit is the limit; that

means, I can go to 64 kilo bytes each selector is 8-bytes. So, this will be how much? 8

kilo bytes, correct? Yes or no? So, 8 kilo bytes; 8 kilo bytes minus 1 segments descriptor

I can store it is not 255 only if the interrupt it is 255, but for a GDT and LDT we can go

up to 8.

We can go and adjust this 16-bit. So, I need not say every time it should be by default 16-

bits. So, I can go and make it say I will only store 5 descriptor or 10, I can make it even

40 10 20, right. It need not be occupying the entire 8 KB of; you are getting this. A limit

field is you what you set. So, if you want to create an LDT of size 10, you go and make

that limit field as what? 80, because you need 10 descriptor. So, the limit field you can

set on your own, but then you have to be very carefully in setting the limit bit, so that

exactly, that much is.

So, what is the important thing about this LDT, this limit field in both GDTR and IDTR?

If I start accessing something more than that limit automatic, then there will be general

protection for it and that it is very very important for us from a security prospective. I

cannot go and try and access something beyond this limit, right. Otherwise, I know were

the LDT is stored so I can look at some offset. So, I have 16, 8 KB thing. So, if I can get

some location very close to that and put may own entry there, I am gone. So, I fixed a

limit, when I create an LDT for you I show what is the base and I also fixed a limit. So,

that if anybody starts accessing beyond that limit, then what will happen? there will be a

fault. So, when I give an offset even for your move instructions, move DS comma some

offset. That offset is checked with the corresponding LDT or GDT limit and if it exceeds

that limit, there itself 1 general protection follows. Do you understand this? And that is

very very crucial.

So, LGDT we are slowly going to the very tough part of this course the LGDT and the

LIDT. What is LGDT? Which will the instruction that will load into the GDT? What is

the LIDT? Load into the IDTR. They will point a memory location which is 48-bytes in

length. So, you go there to that memory location and you find 48-bytes; the first 16-bytes

load it as limit, remaining 32-bytes load it as the base. Do you understand this?

But, in LLDT what you do? It will point LLDT some selector. So, it is a 16-bits selector

pointing to an entry in the GDT, right. And, in the GDT there will be a local descriptor

table descriptor, right and that will point to a start address of the local descriptor and also

thing. So, LLDT alone will point to a selector in the GDT, that selector in turn will point

to; will give you a start address and the; It will point to a selector, that selector will give

you a start address and the limit. In the case of GDT and IDT, you point a memory

location which is 48-bits in length, and there you will have what? First 16-bits will be

loaded as limit and the remaining 32-bites, so that is how this works; you got it, right?

(Refer Slide Time: 08:42)

So, now we will go into lot of this privilege checking things. We will again, we will be

retreating several things again and again so that we have a good clarity. So, out of several

segments described in your GDT and LDT, which of the segments that are currently

being used are pointed to by the 16-bit CS, DS, ES, FS, GS and SS. So, in your GDT and

LDT I could have n number of descriptors, I could have as much as that limit by 8. I

have a limit that divided by 8 will give me the number of descriptors I should have. But,

I could have more than you know 10 or 20 descriptors. As a program at any point of time

I will be using one of those descriptors for code and some of those descriptors for data

and one of those descriptors for stack. So, there will be one. So, I could have 10 code

segments inside that LDT. I can go between 1 code segments to another.

One of those code segments will be used currently, because your CS will point to exactly

1 code segment. One of those segments will be used first stack, because SS points to one

of those stack segment. Then for the data I can use any one of ES, FS, GS and DS. Now,

since descriptors are at 8-byte boundaries, the 16-bit selectors store the first most

significant 13 bits to point to the corresponding descriptor. Since, it is 8-byte boundary

the last 3 bit are anyway 0, so the first 8 bit are stored. The bit 2. Out of the 8 bits that the

3 bits, the bit 2 is the T1 bit which, when it is 0 it implies the selector is pointing to a

descriptor in GDT, when it is 1 it implies the selector is pointing to a descriptor in LDT.

And then, there are 2 bits other than this which is 0 1 and they are called RPL; this is

called request privilege level bits, which we will discuss about this in a greater detail

when we go into task switching, etcetera.

Now, there are 2 privilege levels. For this when I am trying to see there is a descriptor

privilege level, which is stored in the descriptor and there is in the selector, there is also a

privilege level which I am calling as request privilege level; you are getting this? There

is a descriptor privilege level which is stored in the descriptor and I am trying to access

the descriptor, I using a selector to access the descriptor. The selector also can have a

privilege level it is called a request privilege level. So, we will not bother about RPL

today, but tomorrow we will take it up it is very interesting to note how RPL can be used.

So, lets us now go and do one more deep dive again because, we have talked lot of things

in bits and pieces. So, lets us take one more deep dive and find out how we go about

loading segment selectors into segment registers.

(Refer Slide Time: 12:11)

So, we will go into these details now. So, these are all the rules that we will like to follow

when we are loading a segment selector into a segment register. Whenever segment

registers are loaded, how do you load a segment register? You do move DS comma

something, move SS, ES, FS, GS. For CS alone you use a jump or a call. Whenever a

segment selector is to be loaded into a segment register, there are lot of checks that are

happening and these checks are very, very important from a security prospective. So, we

will again spend some time now to again retreat on these important things.

So, I will read out this rules and explain this rules. Whenever segments registers are

loaded, the following rules are checked by the processor that is by the architecture and if

violated an exception is raised thus giving high degree of memory protection. Once an

exception is raised your control again goes back to the interrupt service routine and

hence the operating system.

So, what is rule one? The index field of the selector should be within limits of the GDT

slash LDT that we are trying to access. Otherwise, you raise a general protection fault

which is some fault number 30 you see. So, where do I set the limit for this? When I do

my LIDT or when I do my LGDT or LLDT, I set the limit that so many descriptors alone

can be there; if I exceed that then there is a general protection fault.

(Refer Slide Time: 14:27)

Rule 2, when I am loading a selector into DS, ES, FS or GS that points to a non-readable

segment, it results in an exception, right. So, when I am loading what are non-readable

segments? Execute only segments. So, I have different types of segments here, I will

cover that in the; I think I have done something in the previous things. So, as you see

here suppose I have 1 0 0, this is a code execute only segments. 1 1 0 it is a conforming

code execute only segment, you are getting this. So, these segments if I start loading it in

SS, DS, ES, FS, GS I cannot even read, not even write. So, if I have an; I cannot even

read it, it is a only execute only segments. So, I should not be in a position to even read

it, correct. So, if I have an execute only segments, so this basically explains this; so,

when I am loading a selector into DS, ES, FS or GS that points to a non readable

segments that immediately results in an exception. For loading into SS, the segment

pointed to should be not only just readable, it should also be writable.

So, it is not just non-readable. Non-readable is not just readable alone, it should be first

readable and also writable otherwise, it will give an exception. So, please note, that there

are lot of checks the architecture does before it allows you to start using a segment and if

you rigorously follow these rules your operating system has to be secured. The main

point, why today there is vulnerability is many of the operating system have forgotten,

this rules are not used this rules, correct. You follow what I am trying to say, right. Now,

the rule 4 is, when I am loading into CS the segment should be an executable type

segment. That is executable, executable read. Non-conforming executable and non

conforming executable read; but it should be a executable segment. So, if I write a data

segments into CS then automatically it will give you a fault and then the privilege level

check rules are to be describe later, we will describe that in more detail, but already we

know that if I am at a privilege level k; I can load only my current privilege level is k, I

can load only something greater than k.

(Refer Slide Time: 17:32)

So, all segment registers except CS may be loaded using move, move instruction; MOV

DS comma something. Or, it can be using LDS - the load data segment; load ES, load FS

load GS, LSS these are all some of the things that are present today. And, the CS is

loaded using a JMP or a CALL, we have already described that in the previous notions

and now we will discuss that in a much more boarder detail when we do the assignments.

(Refer Slide Time: 18:10)

Now, what is this Local Descriptor Table? I said LGDT and LIDT, I told that it will;

LGDT some memory location. In that memory location what will be there, it will have

the 48-bit address, similarly, LIDT; that 48-bits means, 16-bit for limit and 32-bit for the

base. But, now we look at LLDT. LLDT will point to some selector inside the GDT,

right. What is that selector? That selector will have a 32-bit base as you see and that 20-

bit limit with a present bit and there is some bit pattern 0000010, this is how that 64 bit is

organized. The 0000010 is nothing but a system bit, is system bit and the type bits. So,

this is a system descriptor, unlike a user descriptor that we have seen in the past. This is

the system descriptor and it has a type and that will be the type and then there is the

present bit and then some bits are hard coded to 0. So, this is how a 64 bit descriptor in

LDT, of a LDT will.

So, what this will give you? It will give you a base address plus it will give you a limit

which is 20 base. It will give you a base address, which is where the LDT will start and it

will give you a limit which is 20 bits here; 20 bit means, I can go up to 1 mega byte; 1

mega byte and each is 8 bytes, so 1 made by 8 what? I could have 256 kilo bytes sorry,

125 kilo byte, 125 into 10 power 2 power 10 LDT entries; LDT entries. So, this is how

LDT goes.

