
Information Security – II

Prof. V. Kamakoti

Department of Computer Science and Engineering

Indian Institute of Technology, Madras

Lecture – 11

Topic: Architectural Aid to Secure Systems Engineering

Session – 10: X86 Protected Mode Details

Good morning and welcome to the session-10, where will start looking in more detail

about the x86 Protected Mode Operation.

(Refer Slide Time: 00:29)

This figure actually talks about, how the x86 processor works. When you boot the

system as you see reset on your left mode side, when you reset the system, it actually

goes into a mode called the Real Address Mode. The Real Address Mode is one, where

you have fixed side segments, you cannot have paging and all the protection mechanisms

that we are talking off are not possible. This mode was basically introduced to have some

compatibility with the earlier systems like the 8086 and before, so that is a real mode.

Then, if you remember yesterday's slides there was a bit in one of the controlled registers

namely CR 0. If you go and set that bit to 1, it actually moves into protected mode. So,

PE equals to 1, as you see in the slide will take it from real address mode to protected

mode. So, when the system boots, it is in real mode. Then the operating system or your

bios or any one of this has to go and set this P to 1. So, it comes into protected mode.

So, in my opinion all the important features that will enable us to build lot amount of

security in the operating system and the compiler level are available only in the protected

mode. There are lots of text books which talk about real mode. In this course, we will

deal only about the protected mode and once in the protected mode, if you go and reset

or again you make your bit PE is equal to 0, it goes back to real mode. Now, if you want

to maintain legacy, if you want to support the past there are lot of things that you need to

do. One of the other things that happened was, when I am executing in the protected

mode there were some old 8086 programs that need to be executed for maintaining

legacy.

So, Intel introduced another mode called Virtual 8086 mode. When you are in the

protected mode and you set this VM flag to 1, you go into Virtual 8086 mode and when

VM becomes 0 you go back to the protected mode. This is the simple state machine of

how, the Intel architecture works in three different modes. One is the real address mode

another is the protected mode and within the protected mode, I can switch to Virtual

8086 mode and come back. In addition, there is something called a System Management

Mode, which also has to be looked very seriously but we will look at it in depth when we

look at the operating system course.

There is something called SMI, this is a System Management Interrupt and in any one of

these modes, either in the real address mode or the protected mode or the Virtual 8086

mode. If SMI is raised, the system switches to the system management mode and then

you press the reset at the stage or do the RSM reset for this management, you come back

to the corresponding mode from which you left. So, the system management mode is

more like an interpreting interrupt service that you do to go and come back. So, there are

lots of things that you can do in the system management mode but one has to understand

system management mode to see that they build operating system and software much

nice, so that there is no security vulnerability because of system management mode. But

understanding of that would also crucial and as I mentioned the just earlier we will do it

as a part of our operating system part of the information security.

In this course, we will be dealing lot about the protected mode, Virtual 8086 mode is

rarely used, real address mode is also rarely used or it is not necessary from this course

prospective. So, we will deal more about the protected mode in this course.

(Refer Slide Time: 05:08)

What is protected mode? Protected itself, the adjective says that there is some protection

and this is the protected mode. Yesterday, we talked about segmentation. So, what the

operating system can do is basically have lot of segments, many segments and it can give

some segments to the program. So, the entire address space, you have 4 GB of address

space can be split into several small, small segments and each segment could be

allocated to a program. So, every program needs three or more segments, it needs a

stack, it needs a code, it needs data. Then it could have some extra segments, it would

have many segments at any point of time we have six segment registers. So, one register

will point to the code segment, which is the executing part of program. One segment

register will point to the data segment another would point to the stack. Then you have

three more segments which can point to extra segments, if needed at that point of time.

Now, each segment has an attribute. What is an attribute of segment? There is a start

address for the segment; there is a limit for that segment. There are many more things in

that segment, we will go and deal one by one but as far as this slide, I want you to

understand that every segment has certain attributes and two of those attributes are the

start address and the limit. So, for every segment we need to store these attributes

somewhere and that is stored in what you call as a descriptor table. The descriptor table

is also inside a memory and in that descriptor table, what we store is for every segment

we store it is attribute and what we call that is a segment descriptor. So, inside the

descriptor table, I will be storing a segment descriptor. What does the segment descriptor

have? Currently it has the base and the offset. So, yesterday when we looked at one of

the assembly programs, we dealt with stack machine. We said move 0, move EAX

comma 0, move EAX comma 8 and we said that 8 is going to get added to the base of the

segment, so that you can get the correct address, where the particular variable is stored.

So, the base of the segment is stored in the descriptor.

Now, I have something called the descriptor table as it is shown in the slide here and

what I said ES colon 8. What will the ES store? That register ES will store, which

descriptor in the table it is pointing to. For example, as I told in the context of multi

process context switching. In a particular segment register, I can make the segment

register point to any of the segments, which segment I am pointing to that will be for

every segment I have a descriptor in the descriptor table. So, what will ES store is, out of

all these descriptors that descriptor to which I point, I will have the offset to that. So,

what ES stores is a selector within that descriptor table, when I go to that index into the

descriptor table I get the base address. If I have a segment that is stored at 200, in the

descriptor table I will have an entry pointing to 2000 and let it be the seventh entry for

example. What will the selector have? It will have the value 7. So, from the value seven,

selector means whatever is stored in the segment register. So, if I say move EAX comma

ES colon 0 yesterday, that ES will have seven. From that 7, I will go into the descriptor

table, I will find that the base is 2000 that 2000, I will add with that offset and I will go

to the address.

When I look at a memory address, it has a segment register, colon, offset. That segment

register will store the entry in the descriptor table, you go to that entry there you will get

the base address, that base address you add it with this offset you will get the actual

address which is there in the memory. You are getting this should I repeat. This is called

a linear address because now you are looking at the entire memory as one contiguous

array as memory.

(Refer Slide Time: 10:40)

In addition, why cannot I store that 2000 itself in the ES? I do not want to store it

because I want to store several things about a segment. There are lots of things that I

want to talk about a given segment. In addition to the base, I want also want to store

something called the limit. So, for example, there is a program that is executing as you

see in the slide. There are three segments for it, one is a code segment, another is a data

segment and another is a stack segment. The code segment is pointed to by CS, the data

segment by ES for just for your change and the stack segment by SS.

For every segment, note that CS is 500 bytes, ES is also 500 bytes and SS is 500 bytes.

So, the limit of 500 will be stored in the descriptor, along with the base the limit also will

be stored. So, when I am trying to access that segment and the offset is greater than that

limit, if I am going to access, say 1001 as a code. I am going to execute the instruction

stored in 1001. Is it correct? It is not correct here because my code segment is only 500

bytes in length, whatever the code is, it should be within that 500 bytes. If I am going to

start executing something in 1001 that means, I am trying to execute some data here,

which is wrong. You are getting this? So, that limit of 500 will also be stored in the

segment descriptor. When I am trying to access that is, my offset is greater than the limit

then immediately, the architecture will raise an exception saying that you are trying to

exceed my limit.

It is the responsibility of the architecture because operating system cannot catch you.

Operating system is also a program; it has to execute to catch you. There is only one

CPU and you are executing on that. You as a program, you are executing on that and if

you make a mistake, who can catch you? The operating system cannot catch you because

it is also a program and it is not executing. Now, it should be a program that is executing

to catch you. Operating system does not know executing, so it cannot catch you. So, the

architecture takes the responsibility of catching you, who sets this limit? The operating

system sets the limit and then allow you to execute then it loses control, the architecture

monitors whether you as a process are adhering to whatever rules that are set by the

operating system and when you do not adhere to that rule, when you violate that rule, the

architecture catches you and hangs it over to the operating system. Is this clear?

This is how architecture can help the operating system impose certain rules and

regulations, which are very, very crucial for security purpose and this is exactly what is

happening here. Similarly, the data is starting from 1000 and it is going to 1500. Now,

when I have a limit that is more than 500, the data segment maximum size is 500. If I try

to access data little above 500, what will happen? It will catch segmentation; it says there

is a segmentation error, segmentation fault, seg fault. When you execute a program, this

is one manifestation of that seg fault I am trying to exceed the limit that I have put here.

Similarly, the stack cannot over grow and stack is very, very important. It keeps on; you

keep on pushing and popping from the stack. Stack is very dynamic, when you start

having many function, your stack will grow as a function calls get executed and returns

back the stack will become smaller. So, the stack will dynamically grow and it will

become smaller. So, there is a growth and diminishing on the stack. So, stack is a

dynamic data entity and so that is a very important reason why we should put a limit for

the stack otherwise it will go and write into a data in this case. It can write into your data

or it can write to something else above 2000, if it is growing down or it is growing up.

So, first you know taste of security we see here, where in I am protecting my own data

and my own stack from my code segment and vice versa. So, each of these, I am now by

this notion of segmentation I can create an isolation between code, data and stack. The

stack cannot over grow into data or code, the code cannot go and execute something in

data or stack, the data cannot write into stack or code. From each of them I am getting a

mutual isolation here, are you understanding this. So, who said? Who gives you? Who

allocates? You are a process; I need 500 bytes of memory, take 500 to 1000, who

allocates this? The operating system allocates. The memory management module of the

operating system allocates 1000 to 1500 for your data, 1500 to 2000 for your data. Who

allocates all these things? The operating system allocates. Once the operating system

allocates then it also puts a limit and this it stores in the memory as a segment selector in

the descriptor table. It also notes your CS, ES and SS pointing to those entries in segment

or descriptor table, where you have the segments described and then it allows you to

execute.

Now, you cannot change these values but you can just execute and when you go and

exceed the limit, immediately it catches you and gives you back to the operating system

in terms of an interrupt. So, if you do this there is a seg fault that happens. The seg fault

will take you to interrupt service routine and that interrupt service routine is an operating

system entity. So, you are caught and given to the operating system. Here, say jump CS

colon 250 is fine because my limit is 500.

(Refer Slide Time: 17:52)

Jump CS colon 501 is a limitation because 500 is your limit.

(Refer Slide Time: 18:00)

Move ES colon 498 comma AX, AX is 16 bytes. So, move the entries in 498 and now

what is 498? 1498 and 1499 into this EAX register. This is fine.

(Refer Slide Time: 18:23)

Suppose I say move ES colon 498 comma EAX, EAX is a 32 bit register. So, 498, 499,

500, 501 also I need to move. So, this is a violation. It is not just, I test the offset with the

limit, I should also set from that offset how much data I am moving that maximum

address also I should test. In this case, it is not enough if I test 498 with 500; it is I should

set 498 plus 4 with 500. So, these are some of the simple things where you get caught.

(Refer Slide Time: 19:08).

When your stack point that is at 498 and I push AX, it is fine because it will now that

stack pointer will go to 500, which is within the limit.

(Refer Slide Time: 19:19)

But when I push EAX then it is not fine because it go 498, 499, 500, 501 it will cross

that. Here, in these two instructions, what we see? The explicit register is not stored, the

address is not store; it is there in the stack pointer. So, that is an implicit addressing that

is happening. If you read the books, there is something called implicit address, implicit

because when I push, I do not have a direct reference to ESP but it uses ESP. So, the

value of ESP, the stack pointer you increment the stack and push the value. That is how

you do push, decrement the stack if you pop stack pointer. So, here ESP is an implicit

addressing mode. So, if I say push EAX then it is going to give me a violation. Are you

able to follow?

(Refer Slide Time: 20:10)

With my SP is 2, pop AX is 5 because this will become 0 as there are only 2 bytes and it

will become.

(Refer Slide Time: 20:20)

But pop EAX is a violation because SP will now become negative 2, 1, 0 minus 1. So,

again these are some of the things which are interesting about limits and always this limit

violation happens when you are very close to that limit and all these are called corner

cases, where your program can fail.

(Refer Slide Time: 20:47)

So, there is a strong interprocess protection here because let me say there are two

processes, process 1 and process 2 and each have their code segment, data segment and

stack segment and process 1 should be prevented from loading CS, such that it can

access the code of process 2. When process 1 is executing, please note that the code

segment is pointing to process 1 code segment as when I am executing process 1, if I am

able to load the code segment corresponding to process 2 or if I am able to load that

index in to the descriptor table, which is pointing to the code segment of process 2 then I

can access process 2. I can access process 2 data or whatever. So, process 1 should be

prevented from loading the code segment corresponding to process 2 or loading the data

segment or loading any other segment corresponding to process 2.

So, in this context I talked about intra process protection, my code and data and stack

could not access between each other like I cannot execute on my data or stack data

cannot write on to stack. Those things we have already seen here but in this context now

I want to protect one process from another process, the code segment of process 1 should

not execute code segment of process 2. So, this is called inter process protection. So,

what we saw in the previous slide was intra process protection. What we are seeing in

this slide is inter process protection. The way by which we are going to prevent process 1

from accessing process 2 data stack and code is by introducing something called a

privilege level. There are four privilege levels in x86 architecture. What are these 4

privilege levels? Privilege level 0 1 2 and 3. The 0 privilege level has the highest

privilege, it is called something like a super user privilege, the one has the next highest,

two and three is the lowest privilege. So, the numerically higher the value of a privilege

level less powerful it is. Please understand there is a reverse mapping here, 0 has the

highest privilege, 1 has, next 2, 3. So, why did Intel or the x86 community think about 4

privilege levels? Because, they wanted the operating system to be a layered operating

system for reasons of security, for reasons of security an operating system need to be

layered. The innermost layer which we call as a kernel should be highly privileged, the

next layer should be a little less privileged and then so on so forth. The application layer

or the user layer can be privilege level three, where it has a very limited power.

When the operating systems create a segment, you are a process, you come and say I

want to execute. So, it will create a code segment, stack segment and data segment, it

creates a privilege level for you. So, you say I want execute, operating system will say

you execute in privilege 2, you execute in privilege 3, you execute in privilege 1. So, the

operating system assigns a privilege level for every process. How does it assign the

privilege level? It assigns the privilege level by putting that privilege level in your

segment descriptor. So, 0 is the highest privilege and 3 is the lowest privilege. In your

descriptor table, when you see this segment descriptor, what is there now? There is a

base address, there is a limit address and there is also a privilege level. So, when you ask

for a code, stack and data, 3 descriptors are created in this descriptor table. Let me say, it

is stored in the locations 1, 4 and 5. One corresponds to code, 4 correspond to data and 5

correspond to stack then the operating system. What will be stored in the descriptor

table? The base of your code segment, the limit of your code segment, the privilege level

of your code segment similarly, for your stack and for your data.

So, three descriptors will be created in the descriptor table, let us say they are stored at

offset 1, 4 and 5 that is entry number 1, entry number 4 and entry number 5 of the table

corresponds to your code, stack and data and what will be stored in your CS register, it

will store 1, it will point to entry 1. Here, in your DS register, it will store 4, SS register it

will store 5. So, whenever somebody wants to use the DS register, he will go to DS

segment register, there he will find 4, so you will come to the fourth entry in the

descriptor table, there he will find the base, the limit and also the privilege level you

understand this. So, slowly we are building up what should be inside the descriptor table.

(Refer Slide Time: 27:19)

Now, because of this privilege level what sought of protections are we going to get?

Before we end up this session, I basically want to talk about what we call as a current

privilege level CPL; I am a process I am executing. Where is my code stored? In a code

segment that code segment has a privilege level. That privilege level is called the current

privilege level. So, the current privilege level is the privilege level of the code segment

that I am currently executing. So, when I am executing, in my CS if I have a value 1; that

means I go to the descriptor table look at the index 1 and there will be a privilege level

stored and that privilege level is my current privilege level. Who assigns this privilege

level to you? The operating system assigns it to you. Now, if I am at privilege level 1, I

cannot go and access any data or stack of privilege level less than one because privilege

level 0 is more powerful than privilege 1, but I can go and access data or stack greater

than privilege level 1. I cannot go and access less than 1. If I am at privilege level say 2, I

can access 2 and 3, I cannot access 1 and 0. If I am at privilege level three that is, if my

current privilege level CPL is three, I cannot access 2, 1 and 0. I can only access 3 level

segments. So, current privilege level and this explanation do not solve the problem that

we have in mind. It does not solve it fully but this is certainly a building block where

finally, we will have to understand how two processes are completely isolated from each

other that we will understand over the next subsequent sessions. Did you follow this?

What we have done so far is that we have introduced a notion of a descriptor table,

which has some descriptors each describing a segment and what is stored in your CS, SS,

ES, FS, GS are not the base address of the segment but a pointer to the descriptor

corresponding to the segment which it is pointing to and in the descriptor you have base,

you have limit, you have privilege levels and we also introduce the notion of a current

privilege level which is the privilege level of the code segment I am currently executing

and depending upon the CPL. Now, I can have my entry in to certain segments my

access to the certain segment can be restricted, you are getting this. So, that restriction

also, we have seen as a part of the session.

Any Doubts?

Student: How the size of segment is fixed?

It is fixed by the operating system, looking at the size of your executable and data. So, if

you look at ELF format, where you know you compile a program. When you look into

the program there, after the compiler compiles it, it will put certain attributes of your

program there. One of the attribute is the size of your code segment, data segment and

stack segment. So, when you want to execute, the operating system will look at your

program and then it will go and find out from the header of the program, the sizes and

based on that it will fix a size of your code segment, stack segment and data segment.

That is why you know, one of the reasons I know Windows program cannot execute in

Linux because even this format might be different across operating system. ELF is a very

known format when you are going to do your assembly language, you will use the ELF

format to assemble your program and execute in the lab and you will do that. So, that is

how the operating system finds the size of your particular segment when it is assigned.

Student: Yes, sir. Actually, I have one doubt.

Yes.

Student: You said, descriptor table will be in side processor that means it is a finite sized.

So, does that put any restriction on number of processes that are processed?

Exactly, very nice. Yes, the descriptor table is finite in size. The reason is that, as we

proceed in the next stage, number one, there are 2 types of descriptor table that we will

see. One is called the global descriptor table another is called a local descriptor table. I

will have one global descriptor table where I can store up to 255 entries but then I can

create a local descriptor table for every process that is currently in execution. So, in the

local descriptor table, I could have 255 entries again for that. So, for a given process, the

number of segments that it can store is limited to 255, the 256 for the first segment

descriptor is always a null descriptor. So, I can use up to 255 descriptors per process but

the number of processes, I do not have a limitation because I can create several local

descriptor tables and I can also do some sought of swapping in and swapping out at GDT

level. So, I can keep increasing my number of processes. So, that is why there is no limit

on the number of processes because of the number of descriptors I can hold because I

create for every process I create another local descriptor which it can use and so I can

have several such local descriptor tables.

Now, you saw one descriptor table, there will be one descriptor table exclusively for the

operating system because operating system is also a program in execution, it is also a

process but it is the super process or the most highly privileged process. So, it will have

one descriptor table and that we can call it as the global descriptor table. Then every

process you create the operating system will create a descriptor table exclusively for that

process and that descriptor table is called a local descriptor table that will be in existence

when the process is alive and when the process completes that local descriptor will go

off. This is how; we manage the numbers that we are talking of there.

Why do we have only four privilege levels, it is something like why you are named

Kamakoti? Because that day I was born, my aunt felt that Kamakoti is a good name and

she named me. Similarly, many questions of this why is very important question is that

day when a designer wanted to design the system or the group which designed the

system felt that four is sufficient. Like same question was asked by Prof. Kalyan

Krishnan, when he taught architecture when I was a student here in 1992 and he asked

why this is 32 bit? Why this is 16 bit? So, it makes lot of why's there. Then we all said

that this, this. Finally, he said nothing, that day that designer wanted to do only 16 bit

and that was only possible that time, so he made it 16 bit. So, many questions in

architecture had these types of answers like that day it was felt that may be 16 bit was

only possible. There were technological limitations also to give some.

So, this is again an interpretation, why it was 4? The reason would be that if you look at

a traditional operating system that is called a micro kernel or the nucleus and then there

is some layers above that which will have these devise drivers, etcetera and then top of it

there will be one more layer which have all the system development software's like,

compilers and all development environment and top of it there is going to be application

and all these 4 have to run at different points of time. So, when you look at an operating

system, when we classify the processes that are running on an operating system are based

on these privileges. We see there is a need for 4 privileges, I cannot think of something

larger than this as of now, that precisely also can be the reason why people look that four

privilege levels. So, this is a retrofit interpretation or justification, may be it is true or

may be not but this is an answer, the best answer that I could give now, any other

doubts?

Student: Address.

Yes, please.

Student: The address, whatever the address we were discussing. Can we use it in the

virtual address page?

No, it is in the real that is; we have not still brought in virtual address memory at all. So,

this is actually the physical address, we have not introduced paging so far.

Student: When we are taking about the process, it is at the operating system level.

No. No, still we are not talking about the process. We are now talking about a process

which is working in an operating system, which has not enabled virtual memory, which

is now only working with segmentation. We will introduce virtual memory later but this

is not the final environment where the process works. But now, today when I am talking

of this session I am not still brought in paging. We are now looking at an operating

system; a fictitious operating system may be, which is working only in protected mode

no paging, no virtualization, no virtual memory already introduced. So, now, we are

looking at real RAM addresses. So, what is stored as a base address in the segment

descriptor, it is a real address in the RAM, it is directly mapping on to the address in the

RAM. The offset that I have put also this plus offset will directly map in to the RAM.

Now, there will be one more stage that is introduced after this translation and before

going to the RAM that is the virtual memory, which we will deal in the next session,

some sessions later.

Now, what we have discussed so far is only about protected mode, no virtual memory

executions. This linear address that you see on the slide here is the actual address on the

RAM. If I say 1004, it is 1004 on the RAM, this is directly sent to the memory address

register in your RAM. Now, when virtualization virtual memory is introduced, this linear

address will undergo another translation and it will go to the RAM. That part, I am going

to introduce a little later. So, the processor can work in 2 modes, the Intel processor can

work in 2 modes, one without paging and one with paging. In the without paging mode,

this is how it works. In with paging mode, there will be another one more translation that

happens after the linear address before it goes to the memory.

So, I hope I have explained what we are trying to do.

