
Artificial Intelligence:

Propositional Logic:

Rules of Inference and Natural Deduction

Prof. Deepak Khemani

Department of Computer Science and Engineering

Indian Institute of Technology, Madras

Module – 02

Lecture – 04

Okay so let’s continue our study of propositional logic. So to do a very quick recap we first
looked at syntax and in the syntax once you define an alphabet you get a language. So the
alphabet includes if you remember things like connectives and propositional variables and so on.
So language is basically a set of sentences and alphabet is things like and or not P Q R without
going into detail these are the kinds of thing we have. And then we have semantics. So as far as
propositional logic is concerned by semantics we mean truth functional semantics we define the
notion of truth values and we saw that there are three kinds of formulae or sentences in any
language. One is tautologies these are sentences which are always true. When we say always true
we basically mean they are true for any valuation of the atomic propositions so whatever the
atomic propositions are P Q R S T and so on whatever valuation you give to them which means
true or false these sentences will always be true and example of that was P or not P. then we have
sentences which are contradictions and these are sentences which are always false. It means any
valuation you choose it will be always false. And an example of a contradiction is this sentence
which is the negation of the tautology that we have seen. I have particularly chosen this example
because there is this relation between contradictions and tautologies. That if you have a tautology
and if you put a negative sign before that it will become a contradiction and vice versa.

 (Refer Slide Time: 3:16)

So in this case we have taken a tautology P or not P put a negation sign in front of that and it
becomes contradiction. And the third kind of sentences are contingencies and by contingency we
mean that the truth value of the sentence depends upon the valuation that you are choosing. So a
sentence like P implies Q for example if you choose P is equal to true and Q is equal to true. But
it would be false if we choose P is equal to true and Q is equal to false. So its truth value is not
independent of the valuation it depends upon the valuation. So we would be more interested in
tautologies and contradictions because we are more interested in proof systems. We want to show
that whenever certain formulae are always true we have a way of reaching to those formulae. So
before we do that so when we talk about contingencies we talk of satisfiability. And the well-
known SAT problem which is common in many areas of computer science is basically
addressing the satisfiability problem.

You are given some sentence you are asking the question if there some valuation which will
make this formula true or which will make this sentence true. So that’s a different kind of a game
altogether we will not get into that. We are more interested in tautologies and contradictions and
we will see what we talk about.

 (Refer Slide Time: 4:52)

Then we define the notion of entailment so if you remember the notion we said that a knowledge
base KB which is set of sentences that are given entails a sentence alpha whenever alpha is
necessarily true as long as KB is true. So whenever KB is true alpha will be true and this is the
notion of entailment. Correspondingly at the syntactic level we have this notion of provability
the notion of proofs and that’s the concept we will be exploring in most of this course. And we
write that a knowledge base proves a sentence alpha and we are interested in that kind of logical
machinery where provability implies truth or entailment and entailment implies provability
which means you want to be able to prove all true formulae and we want to be able to prove only
true formulae. Once we have such machinery we can throw away such semantics and we can just
work with the syntactic machinery which is the proof machinery. Now for a proof system to
work we need a language that the syntax gives us plus we have rules of inference. So let’s look at
proof systems

 (Refer Slide Time: 7:04)

So let me start with a example rule. The rule that we have been we always start with whenever
we look at logic and that is the rule of modus ponens which we have seen earlier and the rule is
written most commonly as P and P implies Q Q. so the sentences above the line are given or
antecedents and the sentence below the line is a consequent or what you derive. We also write
this if you remember as P comma P implies Q and we use this symbol that we have and this rule
we will call as MP which is a short form for modus ponens. Now the first thing to emphasize
which I have done earlier also just to repeat that P and Q are propositional variables which means
you can plug in any sentence in place of P and Q. so for instance so what this defines is only the
form of the argument. So I could have written something like this A and B or C even I can write
A and B or C implies R or S implies.

 (Refer Slide Time: 9:13)

So if I do this I am still using the rule of modus ponens because what I have is something a
sentence of any kind which in the original notation we said P but in this particular example the
sentence is A and B or C and then we have another sentence which says A and B or C implies R
or S. and from that if we can add R or S then we can this is also an instance of modus ponens.
So this is just to emphasize the fact that when we say P or P implies Q these are propositional
variables and you can plug in any sentence doesn’t even have to be in propositional logic it can
be in first order logic or modal logic or any other logics. What really we should write is
something like this that if you have sentence one whatever that sentence is in fact in any
language and if you have another sentence which is of the form sentence one implies sentence
two then we can infer sentence two. So this is the rule of modus ponens and we saw that there
are other kind of rules. So what do we mean by rule of modus ponens that it’s a form of
argument that we are willing to accept which says that whenever we have two sentences which
match this pattern that one of the sentence is the kind P and the second sentence is of the kind P
implies Q then we can make an inference of the third sentence which is Q. whenever this form is
conformed to the argument will be accepted as valid. And if you remember that we had said that
MP is valid if or rather I should say because this sentence P and P implies Q implies Q is a
tautology.

 (Refer Slide Time: 11:44)

So every rule of reference is based on the tautological implication we had seen that in the last
class this is just a quick review of what we had seen. So what is a proof system a proof system
does the following that it’s an algorithm you might say that pick some rule and when I say rule I
mean rule of inference with matching antecedents which means in our knowledge base there are
certain formulae which match that antecedents then add the consequent to the knowledge base
and put this whole thing into a loop until some termination happen we will look at this. This is
by and large the outline of any proof system. A proof system is a sequence of applications of
rules till certain criteria is satisfied. We will look at all these criteria. Another important point to
note is that this notion of some is really a key question. Because once you pick a right rule you
will get a short proof if you pick wrong rules you will produce formulae which is not of any use.
So that some is going to be a critical.

So let’s talk about the termination criteria.so by a large we tend to distinguish between two kinds
of proofs one is called direct proof or we use a term often natural deduction. So we have thrown
in the term deduction here so at this moment you will simply say that deduction is that form of
inferences which use valid rule of inferences. And what we do in direct proof is the termination
criteria is until alpha is added to the KB where alpha is a sentence you are looking for, you want
to prove a certain statement and we use a term theorem. In direct proof you keep adding
formulae till you get the formula you are looking for and that’s the most natural form of proof
and that’s why we often call it natural deduction. This name is also attributed to a logician called
Gentzen and in fact there is a whole system of proving things which is known as gentzen systems
which are basically natural deduction systems and in gentzen system we have a proof tree where
the leaves are what is given to you so P1 and P2 if they are sentences they may give P3 and then

P4 P5 may give you P6 and this may give you P7. And some formula P8 and this will give you
alpha. Alpha is what you are interested in.

 (Refer Slide Time: 16:22)

So gentzen systems are natural deduction systems where the leaves are what are given to you and
internal are the consequents we have added and you terminate when you add the consequent
which is alpha. The other form of proof is called indirect proof and in indirect proof most of the
time we will look at two systems one is the tableau system and one is a resolution method. In
both these methods you try to its kind of proof by contradiction. And what do we mean by this
that if you add negation of goal so we often use the term goal for the formula or sentence that we
want to prove which means negation of alpha to the knowledge base then this results in a
contradiction which we write as. So remember the symbol I have written on the right hand side is
the symbol for bottom it’s a sentence which is always false and what you are doing in a proof by
contradiction is that if you add the negation of the goal then you end up with contradiction which
means the negation of the goal must be false which means that the goal itself must be true.

 (Refer Slide Time: 18:12)

So we will look at this in little bit more detail. Let’s focus on the direct proof to start with and
keep in mind that our goal is to be able to write programs which will do all this work for us. So
this whole exercise is called theorem proving and we want to write programs which are often
called theorem provers. And what they will do for us is that we will give them a set of things
which are given or true and we will say that show that this thing can be derived and the theorem
prover would produce a proof for that. That is our interest. So we would prefer those methods
where it is easy to write algorithms and we will see as we go along that indirect proofs are easier
to implement than direct proofs because very often direct proofs involve certain amount of guess
work certain amount of creativity if you want to say including the rules and things like that.

So let’s look at an example of the proof. So let us say some sentences are given to you. So which
we use the term given so remember your school geometry school algebra you said this is given
and to show that kind of thing or we can use a more formal thing which is premises which you
accept because of some reason. It could be because of the domain you are talking about a
sentence pertain to certain domain so you would say P is true for example or P and Q is true or
something like that. So let’s say we are given some sentences I will just I am just choosing some
random sentences here so let’s say P and Q implies R that’s given to you. You don’t question why
it’s true it’s something given to you and let us say not Q or S implies T. you can plug in any
sentence for P or Q or R. so for example P stands for Alice likes mathematics. Q could stand for
Alice likes Physics then R could be Alice would study science or something like that you know
so if Alice likes math and Alice likes physics then Alice will study science or something like that.
So can plug in virtually any sentence you are not really interested in what you are talking about
you are not interested in content we are interested in form of sentence. Let me just take a very
simple example. Not T and P. let’s say these things are given to us.

 (Refer Slide Time: 21:09)

I hope this works and we want to show let me write it here alpha is equal to R. so we are saying
that if the first three sentences are given to us does R follow logically from this. So one way you
have seen earlier is to construct a truth table just construct a large formula based on this and see
whether R turns out to be true or not. but we are interested in proof methods right now. So let’s
do a proof of this. So what I am writing in blue if you can make out are sentences from this. So
for example not T so this comes so typically the way we write proofs are that how did you get
this not T we got it from sentence three and a rule called simplification we have to give a
justification for any sentence. So we can only use valid rules of inference. five P ok again similar
three and simplification. Six negation of not Q or S how do I get this I get this from four and two
and a rule called modus tollens one of the rule set. So basically a proof system will have a set of
rules of inferences and a lot of time is spent by the logicians in trying to figure out what rules of
inferences do we need for a system to be complete. So if you have more rules of inference you
can possibly get shorter proofs but then the number of choices become large larger at the same
time. So there is a tradeoff between having more rules and less rules.

 (Refer Slide Time: 23:19)

So then we get this so we push this inside we get Q and not S which is from 6 and de morgan’s
which I have not spoken about but any textbook on logic will tell you that. When you push the
not inside which said that not not Q should be Q. from this we will get Q which is 7 and
simplification. Then I can get P or R because I have P which is given in sentence 5 and I have Q
which is given in sentence 8 and there is a rule called addition and finally I get R because we
have 9 and 1 and our favorite rule which is modus ponens. So I have managed to add some
formulae to knowledge base so not T P to knowledge base and in the end I ended up adding a
formula which is the formula you were interested in which is R. so you can also write this is
form of a tree as I said a natural deduction tree so for example at some point you would say
that from this sentence and this sentence I would get R and other things you can actually
construct a tree from the sentence which end up in R. so this is the basic idea of direct proof.

 (Refer Slide Time: 25:18)

Now in this we assume that something was given to us and then from there we move forward. So
one requirement of direct proofs is needs a set of starting sentences because if you know the
application of the rule says that pick some rule with the matching data where is the matching
data it must be there in your knowledge base so you must have some knowledge base to start
with to which you can apply this. Now there are two kinds of so the starting sentences they are
called axioms by axioms we met something that we expect as true. And there are two kinds of
axioms one is logical which basically means that they are tautologies and other is kind of domain
specific which are given to us by domains. So these domain specific axioms are the ones we
started of with we accepted that this is true because somebody said this is true and in any case we
are interested in the entailment question so what is the entailment question we are interested in is
that this set of sentence which is let me write here P and Q implies R comma not Q or S implies
T comma not T and P entails R. this is the question you are interested in. Of course this is not
entailment.

 (Refer Slide Time: 27:34)

This is a derivation but we are interested in those machines where derivations will always
correspond to entails we have said that we are interested in machine which are both sound and
complete. So if my machine produces R as it is done here then R better be true otherwise what is
the use of having such a machine. We need a machine which is sound. Okay so in the next class
we will look at some of the early logical systems where the axioms are not tautologies and we
will show that even working with domains for problems like this can be reduced to looking for
tautologies. That’s why in the beginning of class I said we are interested in tautologies. If you
can solve find all tautologies, we can find problems like this. Okay so we will do that in the next
class.

